Publications by authors named "Alison Karst"

Cyclin E1 () amplification is associated with primary treatment resistance and poor outcome in high-grade serous ovarian cancer (HGSC). Here, we explore approaches to target -amplified cancers and potential strategies to overcome resistance to targeted agents. To examine dependency on in -amplified HGSC, we utilized siRNA and conditional shRNA gene suppression, and chemical inhibition using dinaciclib, a small-molecule CDK2 inhibitor.

View Article and Find Full Text PDF

High grade serous ovarian carcinoma (HGSC) is a DNA instable tumor and its precursor is commonly found originating from the fimbriated end of the fallopian tube secretory epithelial (FTSE) cells. The local stresses via ovulation and related inflammation are risks for HGSC. In this study, we examined the cellular and molecular responses of FTSE cells to stress.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide studies have identified 11 regions linked to the risk of high-grade serous epithelial ovarian cancer (HGSOC), and eQTL analyses help pinpoint candidate genes at these regions.
  • Three significant cis-eQTL associations were found at genes CDC42, CDCA8, and HOXD9, with functional evaluations conducted in HGSOC precursor cells.
  • Overexpressing HOXD9 boosted cancer cell growth and revealed a genetic interaction that may indicate its causal role in HGSOC, highlighting its potential influence on genetic susceptibility to the disease.
View Article and Find Full Text PDF

Objective: To credential Stathmin 1 (STMN1) and p16(INK4A) (p16) as adjunct markers for the diagnosis of serous tubal intraepithelial carcinoma (STIC), and to compare STMN1 and p16 expression in p53-positive and p53-negative STIC and invasive high-grade serous carcinoma (HGSC).

Methods: Immunohistochemistry (IHC) was used to examine STMN1 and p16 expression in fallopian tube specimens (n=31) containing p53-positive and p53-negative STICs, invasive HGSCs, and morphologically normal FTE (fallopian tube epithelium). STMN1 and p16 expression was scored semiquantitatively by four individuals.

View Article and Find Full Text PDF

Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs).

View Article and Find Full Text PDF

Metastatic dissemination of ovarian tumors involves the invasion of tumor cell clusters into the mesothelial cell lining of peritoneal cavity organs; however, the tumor-specific factors that allow ovarian cancer cells to spread are unclear. We used an in vitro assay that models the initial step of ovarian cancer metastasis, clearance of the mesothelial cell layer, to examine the clearance ability of a large panel of both established and primary ovarian tumor cells. Comparison of the gene and protein expression profiles of clearance-competent and clearance-incompetent cells revealed that mesenchymal genes are enriched in tumor populations that display strong clearance activity, while epithelial genes are enriched in those with weak or undetectable activity.

View Article and Find Full Text PDF

High-grade serous ovarian cancers are characterized by widespread recurrent copy number alterations. Although some regions of copy number change harbor known oncogenes and tumor suppressor genes, the genes targeted by the majority of amplified or deleted regions in ovarian cancer remain undefined. Here we systematically tested amplified genes for their ability to promote tumor formation using an in vivo multiplexed transformation assay.

View Article and Find Full Text PDF

The fallopian tube is now generally considered the dominant site of origin for high-grade serous ovarian carcinoma. However, the molecular pathogenesis of fallopian tube-derived serous carcinomas is poorly understood and there are few experimental studies examining the transformation of human fallopian tube cells. Prompted by recent genomic analyses that identified cyclin E1 (CCNE1) gene amplification as a candidate oncogenic driver in high-grade serous ovarian carcinoma, we evaluated the functional role of cyclin E1 in serous carcinogenesis.

View Article and Find Full Text PDF

High-grade serous ovarian carcinoma presents significant clinical and therapeutic challenges. Although the traditional model of carcinogenesis has focused on the ovary as a tumor initiation site, recent studies suggest that there may be additional sites of origin outside the ovary, namely the secretory cells of the fallopian tube. Our study demonstrates that high-grade serous tumors can originate in fallopian tubal secretory epithelial cells and also establishes serous tubal intraepithelial carcinoma as the precursor lesion to high-grade serous ovarian and peritoneal carcinomas in animal models targeting the Brca, Tp53, and Pten genes.

View Article and Find Full Text PDF

Primary human fallopian tube secretory epithelial cell (FTSEC) cultures are useful for studying normal fallopian tube epithelial biology, as well as for developing models of fallopian tube disease, such as cancer. Because of the limited ability of primary human FTSECs to proliferate in vitro, it is necessary to immortalize them in order to establish a cell line that is suitable for long-term culture and large-scale in vitro experimentation. This protocol describes the isolation of FTSECs from human fallopian tube tissue, conditions for primary FTSEC culture and techniques for establishing immortal FTSEC lines.

View Article and Find Full Text PDF

The comprehensive characterization of a large number of cancer genomes will eventually lead to a compendium of genetic alterations in specific cancers. Unfortunately, the number and complexity of identified alterations complicate endeavors to identify biologically relevant mutations critical for tumor maintenance because many of these targets are not amenable to manipulation by small molecules or antibodies. RNA interference provides a direct way to study putative cancer targets; however, specific delivery of therapeutics to the tumor parenchyma remains an intractable problem.

View Article and Find Full Text PDF

Ovarian cancer has a disproportionately high mortality rate because patients typically present with late-stage metastatic disease. The vast majority of these deaths are from high-grade serous carcinoma. Recent studies indicate that many of these tumors arise from the fallopian tube and subsequently metastasize to the ovary.

View Article and Find Full Text PDF

Background: Most high-grade pelvic serous carcinomas (HGPSCs) arise from fallopian tube epithelium (FTE). To date, few markers have been shown to characterize FTE transformation. Stathmin 1 (STMN1) is a candidate oncogene whose activity is influenced by p53, p27Kip1 (p27), and PI3K/Akt pathway activation.

View Article and Find Full Text PDF

High-grade serous ovarian carcinoma (HGSOC) is a lethal disease for which improved screening and treatment strategies are urgently needed. Progress in these areas is impeded by our poor understanding of HGSOC pathogenesis. Most ovarian cancer research is based on the hypothesis that HGSOC arises from ovarian surface epithelial cells.

View Article and Find Full Text PDF

Ovarian cancer is a deadly disease for which there is no effective means of early detection. Ovarian carcinomas comprise a diverse group of neoplasms, exhibiting a wide range of morphological characteristics, clinical manifestations, genetic alterations, and tumor behaviors. This high degree of heterogeneity presents a major clinical challenge in both diagnosing and treating ovarian cancer.

View Article and Find Full Text PDF

Nuclear factor kappa B (NF-kappaB) signaling is deregulated in many tumor types, resulting in aberrant expression and/or activation of NF-kappaB transcriptional complexes. We have previously reported that nuclear expression of the NF-kappaB subunit p50 is strongly correlated with melanoma progression and poor 5-year patient survival. In this study, we used cDNA microarray to analyze the gene expression profiles of melanoma cells overexpressing NF-kappaB p50.

View Article and Find Full Text PDF

Malignant melanoma is an aggressive and chemoresistant form of skin cancer characterized by rapid metastasis and poor patient prognosis. The development of innovative therapies with improved efficacy is critical to treatment of this disease. Here, we show that aberrant expression of two proteins, p53 up-regulated modulator of apoptosis (PUMA) and phosphorylated Akt (p-Akt), is associated with poor patient survival.

View Article and Find Full Text PDF

Cutaneous malignant melanoma is an aggressive form of skin cancer, characterized by strong chemoresistance and poor patient prognosis. The molecular mechanisms underlying its resistance to chemotherapy remain unclear but are speculated to involve the dysregulation of apoptotic pathways. In this study, we sought to determine whether PUMA (p53 upregulated modulator of apoptosis) contributes to human melanoma formation, tumor progression, and survival.

View Article and Find Full Text PDF