Publications by authors named "Alison K Kearns"

Using the structure-activity relationship emerging from previous Letter, and guided by pharmacokinetic properties, new AIMs have been prepared with both improved efficacy against human glioblastoma cells and cell permeability as determined by fluorescent confocal microscopy. We present our first unambiguous evidence for telomeric G4-forming oligonucleotide anisotropy by NMR resulting from direct interaction with AIMs, which is consistent with both our G4 melting studies by CD, and our working hypothesis. Finally, we show that AIMs induce apoptosis in SNB-19 cells.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, C21H16ClNO4, contains two independent mol-ecules (A and B), each adopting a conformation wherein the isoxazole ring is roughly orthogonal to the anthrone ring. The dihedral angle between the mean plane of the isoxazole (all atoms) and the mean plane of the anthrone (all atoms) is 88.48 (3)° in one mol-ecule and 89.

View Article and Find Full Text PDF

A series of 7-amino- and 7-acetamidoquinoline-5,8-diones with aryl substituents at the 2-position were synthesized, characterized, and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1) -directed antitumor agents. The synthesis of lavendamycin analogues is illustrated. Metabolism studies demonstrated that 7-amino analogues were generally better substrates for NQO1 than 7-amido analogues, as were compounds with smaller heteroaromatic substituents at the C-2 position.

View Article and Find Full Text PDF

A critical comparison of methods to prepare sterically hindered 3-aryl isoxazoles containing fused aromatic rings using the nitrile oxide cycloaddition (NOC) reveal that modification of the method of Bode, Hachisu, Matsuura, and Suzuki (BHMS), utilizing either triethylamine as base or sodium enolates of the diketone, ketoester, and ketoamide dipolarophiles, respectively, was the method of choice for this transformation.

View Article and Find Full Text PDF