Publications by authors named "Alison Jee"

Nevirapine, an antiretroviral used in the treatment of HIV, is associated with idiosyncratic drug-induced liver injury (IDILI), a potentially life-threatening adverse drug reaction. Its usage has decreased due to this concern, but it is still widely used in lower-resource settings. In general, the mechanisms underlying idiosyncratic drug reactions (IDRs) are poorly understood, but evidence indicates that most are immune-mediated.

View Article and Find Full Text PDF

Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats.

View Article and Find Full Text PDF

The risk of idiosyncratic drug-induced agranulocytosis (IDIAG) markedly constrains the use of clozapine, a neuroleptic with unparalleled efficacy. Most clozapine patients experience an early inflammatory response, likely a necessary step in IDIAG onset. However, most patients do not progress to IDIAG, presumably because of the requirement of specific human leukocyte antigen (HLA) haplotypes, T cell receptors, and other unknown factors.

View Article and Find Full Text PDF

Although clozapine is a highly efficacious schizophrenia treatment, it is under-prescribed due to the risk of idiosyncratic drug-induced agranulocytosis (IDIAG). Clinical data indicate that most patients starting clozapine experience a transient immune response early in treatment and a similar response has been observed in clozapine-treated rats, but the mechanism by which clozapine triggers this transient inflammation remains unclear. Therefore, the aim of this study was to characterize the role of inflammasome activation during the early immune response to clozapine using in vitro and in vivo models.

View Article and Find Full Text PDF

Idiosyncratic drug reactions (IDRs) range from relatively common, mild reactions to rarer, potentially life-threatening adverse effects that pose significant risks to both human health and successful drug discovery. Most frequently, IDRs target the liver, skin, and blood or bone marrow. Clinical data indicate that most IDRs are mediated by an adaptive immune response against drug-modified proteins, formed when chemically reactive species of a drug bind to self-proteins, making them appear foreign to the immune system.

View Article and Find Full Text PDF

Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver.

View Article and Find Full Text PDF

Trimethoprim (TMP)-induced skin rash and liver injury are likely to involve the formation of reactive metabolites. Analogous to nevirapine-induced skin rash, 1 possible reactive metabolite is the sulfate conjugate of α-hydroxyTMP, a metabolite of TMP. We synthesized this sulfate and found that it reacts with proteins in vitro.

View Article and Find Full Text PDF

The jadomycins are a family of secondary metabolites produced by S. venezuelae ISP5230. Specific jadomycins have been shown to possess a variety of anticancer, antifungal, and antibacterial properties, with different molecular mechanisms of action.

View Article and Find Full Text PDF

Pyrimidine polyphosphates were first detected in cells 5 decades ago; however, their biological significance remains only partially resolved. Such nucleoside polyphosphates are believed to be produced nonspecifically by promiscuous enzymes. Herein, synthetically prepared deoxythymidine 5'-tetraphosphate (p4dT) was evaluated with a thymidylyltransferase, Cps2L.

View Article and Find Full Text PDF