Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we report the synthesis of piperidine-based 3D fragment building blocks - 20 regio- and diastereoisomers of methyl substituted pipecolinates using simple and general synthetic methods.
View Article and Find Full Text PDFFragment-based ligand discovery was successfully applied to histone deacetylase HDAC2. In addition to the anticipated hydroxamic acid- and benzamide-based fragment screening hits, a low affinity (∼1 mM) α-amino-amide zinc binding fragment was identified, as well as fragments binding to other regions of the catalytic site. This alternative zinc-binding fragment was further optimized, guided by the structural information from protein-ligand complex X-ray structures, into a sub-μM, brain penetrant, HDAC2 inhibitor () capable of modulating histone acetylation levels .
View Article and Find Full Text PDFJ Med Chem
November 2021
The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization.
View Article and Find Full Text PDFAberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 () through structure-guided optimization of our previously published isoindolinone lead ().
View Article and Find Full Text PDFThe MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design.
View Article and Find Full Text PDFFragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we describe a workflow for the design and synthesis of 56 3D disubstituted pyrrolidine and piperidine fragments that occupy under-represented areas of fragment space (as demonstrated by a principal moments of inertia (PMI) analysis).
View Article and Find Full Text PDFJ Med Chem
May 2019
The KEAP1-NRF2-mediated cytoprotective response plays a key role in cellular homoeostasis. Insufficient NRF2 signaling during chronic oxidative stress may be associated with the pathophysiology of several diseases with an inflammatory component, and pathway activation through direct modulation of the KEAP1-NRF2 protein-protein interaction is being increasingly explored as a potential therapeutic strategy. Nevertheless, the physicochemical nature of the KEAP1-NRF2 interface suggests that achieving high affinity for a cell-penetrant druglike inhibitor might be challenging.
View Article and Find Full Text PDFBackground: Genetic testing of tumor tissue and circulating cell-free DNA for somatic variants guides patient treatment of many cancers. Such measurements will be fundamental in the future support of precision medicine. However, there are currently no primary reference measurement procedures available for nucleic acid quantification that would support translation of tests for circulating tumor DNA into routine use.
View Article and Find Full Text PDFAberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK.
View Article and Find Full Text PDFLp-PLA has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC > 1 mM).
View Article and Find Full Text PDFElevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273).
View Article and Find Full Text PDFJ Med Chem
April 2016
KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction.
View Article and Find Full Text PDFInhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis and pro-survival signaling pathways whose deregulation is often associated with tumor genesis and tumor growth. IAPs have been proposed as targets for anticancer therapy, and a number of peptidomimetic IAP antagonists have entered clinical trials. Using our fragment-based screening approach, we identified nonpeptidic fragments binding with millimolar affinities to both cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP).
View Article and Find Full Text PDFHerein, we describe the discovery of potent and highly selective inhibitors of both CDK4 and CDK6 via structure-guided optimization of a fragment-based screening hit. CDK6 X-ray crystallography and pharmacokinetic data steered efforts in identifying compound 6, which showed >1000-fold selectivity for CDK4 over CDKs 1 and 2 in an enzymatic assay. Furthermore, 6 demonstrated in vivo inhibition of pRb-phosphorylation and oral efficacy in a Jeko-1 mouse xenograft model.
View Article and Find Full Text PDFThe application of fragment-based screening techniques to cyclin dependent kinase 2 (CDK2) identified multiple (>30) efficient, synthetically tractable small molecule hits for further optimization. Structure-based design approaches led to the identification of multiple lead series, which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site. The majority of this paper details the structure-guided optimization of indazole (6) using information gained from multiple ligand-CDK2 cocrystal structures.
View Article and Find Full Text PDFBackground: The wide variety of real-time amplification platforms currently available has determined that standardisation of DNA measurements is a fundamental aspect involved in the comparability of results. Statistical analysis of the data arising from three different real-time platforms was conducted in order to assess inter-platform repeatability. On three consecutive days two PCR reaction mixes were used on each of the three amplification platforms - the LightCycler, ABI PRISM 7700 and Rotor Gene 3000.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2005
DNA is a universal analyte found in almost every organism. It is the code that dictates our genetic make-up and it provides a vast library of information. DNA sequences can indicate genetic modification of foodstuffs, how we may metabolise pharmaceuticals and the likelihood of suffering particular diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2004
The thapsigargins are a family of complex guaianolides with potent and selective Ca(2+)-modulating properties. This article documents the evolution of a synthetic route through several iterations to a final practical and scaleable synthetic route capable of generating both unnatural and natural products based around the guaianolide skeleton.
View Article and Find Full Text PDFThere are few data on the molecular pathogenesis of cutaneous T cell lymphomas. A recent allelotyping study by our group identified frequent allelic loss on 9p, 10q, and 17p including losses on 9p21 in 16% of patients with mycosis fungoides and 46% with Sezary syndrome. The P15 and P16 genes are intricately linked on 9p21 and can be inactivated in melanoma and non-Hodgkin's lymphoma.
View Article and Find Full Text PDF