Publications by authors named "Alison J Ross"

The evolutionarily conserved planar cell polarity (PCP) pathway (or noncanonical Wnt pathway) drives several important cellular processes, including epithelial cell polarization, cell migration and mitotic spindle orientation. In vertebrates, PCP genes have a vital role in polarized convergent extension movements during gastrulation and neurulation. Here we show that mice with mutations in genes involved in Bardet-Biedl syndrome (BBS), a disorder associated with ciliary dysfunction, share phenotypes with PCP mutants including open eyelids, neural tube defects and disrupted cochlear stereociliary bundles.

View Article and Find Full Text PDF

Genetically isolated populations, such as Newfoundland, have contributed greatly to the identification of disease-causing genes. A linkage disequilibrium (LD) study involving six Newfoundland families predicted a critical interval for Bardet-Biedl syndrome 1 (BBS1) (Young et al. in Am J Hum Genet 65:1680-1687, 1999), but the subsequent identification of BBS1 revealed that it lies outside this region.

View Article and Find Full Text PDF

RAB, ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins belong to the Ras superfamily of small GTP-binding proteins and are essential for various membrane-associated intracellular trafficking processes. None of the approximately 50 known members of this family are linked to human disease. Using a bioinformatic screen for ciliary genes in combination with mutational analyses, we identified ARL6 as the gene underlying Bardet-Biedl syndrome type 3, a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment.

View Article and Find Full Text PDF

BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death.

View Article and Find Full Text PDF

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized primarily by retinal dystrophy, obesity, polydactyly, renal malformations and learning disabilities. Although five BBS genes have been cloned, the molecular basis of this syndrome remains elusive. Here we show that BBS is probably caused by a defect at the basal body of ciliated cells.

View Article and Find Full Text PDF

Bardet-Biedl syndrome is a genetically and clinically heterogeneous disorder caused by mutations in at least seven loci (BBS1-7), five of which are cloned (BBS1, BBS2, BBS4, BBS6, and BBS7). Genetic and mutational analyses have indicated that, in some families, a combination of three mutant alleles at two loci (triallelic inheritance) is necessary for pathogenesis. To date, four of the five known BBS loci have been implicated in this mode of oligogenic disease transmission.

View Article and Find Full Text PDF