Publications by authors named "Alison J Lin"

Impairment of endothelial barrier function is implicated in many vascular and inflammatory disorders. One prevalent mechanism of endothelial dysfunction is an increase in reactive oxygen species under oxidative stress. Previous reports have demonstrated that hydrogen peroxide (H(2)O(2)), a highly stable reactive oxygen species that modulates physiological signaling pathways, also enhances endothelial permeability, but the mechanism of this effect is unknown.

View Article and Find Full Text PDF

Young men who have sex with men (YMSM) of color are disproportionately impacted by HIV/AIDS in the United States. More HIV prevention interventions targeting risk factors of this group are needed, particularly at the structural level. This article focuses on Connect to Protect®: Partnerships for Youth Prevention Interventions (C2P), a multisite study employing community mobilization to decrease HIV acquisition and transmission among youth.

View Article and Find Full Text PDF

Decreasing health disparities must increase access to care, improve health education and ease navigating the health care system. Community Health Workers (CHW) take on these tasks in professional and culturally competent manners. The Healthy Families Brooklyn (HFB) Program serves residents in two public housing developments in Brooklyn, NY.

View Article and Find Full Text PDF

The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser(22)).

View Article and Find Full Text PDF

Previous experience with violence or a deficit in interpersonal skills may lead to violence in adolescent relationships. In this article we focus on various forms of interpersonal violence (bullying, sexual harassment, coercion, and relationship violence) that adolescents may experience and pay special attention to risk factors, help-seeking behaviors, and sequelae.

View Article and Find Full Text PDF

This article examines adolescent intimacy through a developmental lens. As they age, adolescents develop the relational skills necessary to gain independence from their parents and form intimate relationships with friends and romantic partners. This article details how adolescents' intimate relationships expand from parental connections to encompass friendships, dating, and sexual activity during progressing stages of development.

View Article and Find Full Text PDF

Nitric oxide (NO)- and atrial natriuretic peptide (ANP)-initiated cGMP signaling cascades are important in the maintenance of cardiovascular homeostasis. The molecular signaling mechanisms downstream of cGMP are not well understood, however. We have used small interfering RNA (siRNA) approaches to specifically knock down a series of signaling proteins in bovine aortic endothelial cells, and we have combined biochemical analyses with physiological assays to investigate cGMP-mediated signal transduction pathways.

View Article and Find Full Text PDF

Short peptide tags S6 and A1, each 12 residues in length, were identified from a phage-displayed peptide library as efficient substrates for site-specific protein labeling catalyzed by Sfp and AcpS phosphopantetheinyl transferases (PPTases), respectively. S6 and A1 tags were selected for useful levels of orthogonality in reactivities with the PPTases: the catalytic efficiency, kcat/Km of Sfp-catalyzed S6 serine phosphopantetheinylation was 442-fold greater than that for AcpS. Conversely, the kcat/Km of AcpS-catalyzed A1 labeling was 30-fold higher than that for Sfp-catalyzed A1 labeling.

View Article and Find Full Text PDF

Sfp phosphopantetheinyl transferase covalently attaches small-molecule probes including biotin and various organic fluorophores to a specific serine residue in the peptidyl carrier protein (PCP) or a short 11-residue peptide tag ybbR through a phosphopantetheinyl linker. We describe here a protocol for site-specific protein labeling by Sfp-catalyzed protein post-translational modification that includes (i) expression and purification of Sfp, (ii) synthesis of small-molecule probe-CoA conjugates, (iii) construction of target protein fusions with PCP or the ybbR tag, (iv) labeling PCP- or ybbR-tagged target protein fusions in cell lysates and on live cell surfaces and (v) imaging fluorophore-labeled cell surface receptors by fluorescence microscopy. To follow this protocol, we advise that you allow 3 d for the expression and purification of Sfp phosphopantetheinyl transferase, 1 d for the synthesis and purification of the small-molecule probe-CoA conjugates as the substrates of Sfp, 3 d for the cloning of target protein genes as fusions to the PCP or the ybbR tag in the appropriate plasmids and another 3 d for transfecting cell lines with the plasmids and the expression of PCP- or ybbR-tagged proteins.

View Article and Find Full Text PDF

At present, there is an unprecedented level of interest in the properties and structures of complexes consisting of DNA mixed with oppositely charged cationic liposomes (CLs). The interest arises because the complexes mimic natural viruses as chemical carriers of DNA into cells in worldwide human gene therapy clinical trials. However, since our understanding of the mechanisms of action of CL-DNA complexes interacting with cells remains poor, significant additional insights and discoveries will be required before the development of efficient chemical carriers suitable for long-term therapeutic applications.

View Article and Find Full Text PDF

Cationic liposomes (CLs) are used as non-viral vectors in worldwide clinical trials of gene therapy. Among other advantages, CL-DNA complexes have the ability to transfer very large genes into cells. However, since the understanding of their mechanisms of action is still incomplete, their transfection efficiencies remain low compared to those of viruses.

View Article and Find Full Text PDF

Cationic liposomes (CLs) are used as non-viral vectors in worldwide clinical trials of gene therapy. Among other advantages, CL-DNA complexes have the ability to transfer very large genes into cells. However, since the understanding of their mechanisms of action is still incomplete, their transfection efficiencies remain low compared to those of viruses.

View Article and Find Full Text PDF

An 11-residue peptide with the sequence DSLEFIASKLA was identified from a genomic library of Bacillus subtilis by phage display as an efficient substrate for Sfp phosphopantetheinyl transferase-catalyzed protein labeling by small molecule-CoA conjugates. We name this peptide the "ybbR tag," because part of its sequence is derived from the ybbR ORF in the B. subtilis genome.

View Article and Find Full Text PDF

Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp.

View Article and Find Full Text PDF

The endothelial isoform of nitric-oxide synthase (eNOS) is regulated by a complex pattern of post-translational modifications. In these studies, we show that eNOS is dynamically regulated by S-nitrosylation, the covalent adduction of nitric oxide (NO)-derived nitrosyl groups to the cysteine thiols of proteins. We report that eNOS is tonically S-nitrosylated in resting bovine aortic endothelial cells and that the enzyme undergoes rapid transient denitrosylation after addition of the eNOS agonist, vascular endothelial growth factor.

View Article and Find Full Text PDF

Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates.

View Article and Find Full Text PDF

Cationic liposomes (CLs) are used as gene vectors (carriers) in worldwide human clinical trials of non-viral gene therapy. These lipid-gene complexes have the potential of transferring large pieces of DNA of up to 1 million base-pairs into cells. As our understanding of the mechanisms of action of CL-DNA complexes remains poor, transfection efficiencies are still low when compared to gene delivery with viral vectors.

View Article and Find Full Text PDF

The endothelial isoform of nitric oxide synthase (eNOS), a key regulator of vascular tone, is activated in endothelial cells by diverse Ca(2+)-mobilizing agonists, including vascular endothelial growth factor (VEGF). Although the activation state of eNOS and the subcellular localization of the enzyme are both highly regulated, the relationship between enzyme activity and subcellular targeting remains obscure. We aim here to elucidate this relationship by direct dynamic imaging analysis of Ca(2+)/CaM-dependent eNOS activation in living endothelial cells, using high-resolution confocal microscopy and donor dequenching fluorescence resonance energy transfer (FRET) techniques.

View Article and Find Full Text PDF

Cationic liposomes (CLs) are used worldwide as gene vectors (carriers) in nonviral clinical applications of gene delivery, albeit with unacceptably low transfection efficiencies (TE). We present three-dimensional laser scanning confocal microscopy studies revealing distinct interactions between CL-DNA complexes, for both lamellar L(alpha)(C) and inverted hexagonal H(II)(C) nanostructures, and mouse fibroblast cells. Confocal images of L(alpha)(C) complexes in cells identified two regimes.

View Article and Find Full Text PDF

The endothelial isoform of nitric-oxide synthase (eNOS) undergoes a complex pattern of covalent modifications, including acylation with the fatty acids myristate and palmitate as well as phosphorylation on multiple sites. eNOS acylation is a key determinant for the reversible subcellular targeting of the enzyme to plasmalemmal caveolae. We transfected a series of hemagglutinin epitope-tagged eNOS mutant cDNAs deficient in palmitoylation (palm(-)) and/or myristoylation (myr(-)) into bovine aortic endothelial cells; after treatment with the eNOS agonists sphingosine 1-phosphate or vascular endothelial growth factor, the recombinant eNOS was immunoprecipitated using an antibody directed against the epitope tag, and patterns of eNOS phosphorylation were analyzed in immunoblots probed with phosphorylation state-specific eNOS antibodies.

View Article and Find Full Text PDF