Publications by authors named "Alison J Johnson"

Adeno-associated virus (AAV)-based gene therapies have shown promise as novel treatments for rare genetic disorders such as hemophilia A and spinal muscular atrophy. However, cellular immune responses mediated by cytotoxic (CD8) and helper (CD4) T cells may target vector-transduced cells as well as healthy immune cells, impacting safety and efficacy. In this study, we describe the optimization and reproducibility of interferon-γ (IFNγ)-based and interleukin-2 (IL-2)-based enzyme-linked immunosorbent spot (ELISpot) assays for measuring T cell responses against AAV peptide antigens.

View Article and Find Full Text PDF

Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects.

View Article and Find Full Text PDF

During Ag priming, naive CD4 T cells differentiate into subsets with distinct patterns of cytokine expression that dictate to a major extent their functional roles in immune responses. We identified a subset of CD4 T cells defined by secretion of IL-3 that was induced by Ag stimulation under conditions different from those associated with previously defined functional subsets. Using mouse models of bacterial and viral infections, we showed that IL-3-secreting CD4 T cells were generated by infection at the skin and mucosa but not by infections introduced directly into the blood.

View Article and Find Full Text PDF

Effective subunit vaccines require the incorporation of adjuvants that stimulate cells of the innate immune system to generate protective adaptive immune responses. Pattern recognition receptor agonists are a growing class of potential adjuvants that can shape the character of the immune response to subunit vaccines by directing the polarization of CD4 T cell differentiation to various functional subsets. In the current study, we applied a high-throughput in vitro screen to assess murine CD4 T cell polarization by a panel of pattern recognition receptor agonists.

View Article and Find Full Text PDF

Enzyme-linked immunospot (ELISPOT) is an assay used to detect secretion of cytokines from immune cells. The resolution and sensitivity of ELISPOT allow for the detection of rare T cell specificities and small quantities of molecules produced by individual cells. In this chapter, we describe an epitope screening method that uses CD4 T cell ELISPOT assays to identify specific novel mycobacterial antigens as potential vaccine candidates.

View Article and Find Full Text PDF

remains a threat to global health, and a more efficacious vaccine is needed to prevent disease caused by We previously reported that the mycobacterial ribosome is a major target of CD4 T cells in mice immunized with a genetically modified strain (IKEPLUS) but not in mice immunized with BCG. Two specific ribosomal proteins, RplJ and RpsA, were identified as cross-reactive targets of , but the breadth of the CD4 T cell response to ribosomes was not determined. In the present study, a library of ribosomal proteins and -predicted peptide libraries were used to screen CD4 T cell responses in IKEPLUS-immunized mice.

View Article and Find Full Text PDF

Analysis of Ag-specific CD4 T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals.

View Article and Find Full Text PDF

Tuberculosis (TB) due to remains a major global infectious disease problem, and a more efficacious vaccine is urgently needed for the control and prevention of disease caused by this organism. We previously reported that a genetically modified strain of called IKEPLUS is a promising TB vaccine candidate. Since protective immunity induced by IKEPLUS is dependent on antigen-specific CD4 T cell memory, we hypothesized that the specificity of the CD4 T cell response was a critical feature of this protection.

View Article and Find Full Text PDF

Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag).

View Article and Find Full Text PDF

Macrophages encounter flaviviruses early after injection by arthropod vectors. Using in vivo imaging of mice inoculated with firefly luciferase-expressing single-cycle flavivirus particles (FLUC-SCFV), we examined the initial dissemination of virus particles in the presence or absence of lymph node (LN)-resident macrophages. Higher luciferase activity, indicating higher SCFV gene expression, was detected in the footpad of macrophage-depleted mice after 24h post infection (hpi).

View Article and Find Full Text PDF

CD8(+) T cells are important for resolution of HSV-2 lesions from the female genital epithelium. It is uncertain whether optimal clearance of viruses such as HSV-2 that cause a limited, non-systemic infection solely requires expression of effector functions by infiltrating CD8(+) T lymphocytes, or if the clearance rate is reflective of the expression level of critical effector functions. To address this, CD8(+) T cells from normal OT-I mice or OT-I mice deficient in IFNγ (IFNγ(-/-)) or the IFNγ receptor (IFNγR(-/-)) were activated in vitro in the presence of IFNγ or IL-4 to generate a series of effector populations (Tc1 and Tc2-like respectively) that secreted different levels of IFNγ and expressed different levels of HSV-specific cytolytic function.

View Article and Find Full Text PDF

Interferon gamma (IFNgamma) is important for immune resistance to herpes simplex virus (HSV) infection. To examine the influence of IFNgamma on the development of HSV-specific immune responses and test for IFNgamma-independent adaptive immune mechanisms of protection, IFNgamma-deficient mice (IFNgamma(-/-)) were immunized with thymidine kinase-deficient HSV-2 (HSV-2 333tk(-)). HSV-specific cellular and humoral responses were elicited in immunized IFNgamma(-/-) mice resulting in increased resistance relative to non-immune C57BL/6J (B6) mice following challenge with fully virulent HSV-2.

View Article and Find Full Text PDF
Article Synopsis
  • Zika virus (ZIKV) is a flavivirus discovered in Uganda in 1947, primarily transmitted by mosquitoes.
  • Although ZIKV is common in Africa and Southeast Asia, human cases are infrequent, with fewer than 10 documented prior to a 2007 outbreak.
  • The 2007 epidemic in Yap State, Micronesia, prompted research into the genetic and serological characteristics of the virus involved in that outbreak.
View Article and Find Full Text PDF

In primary infection, CD8(+) T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4(+) T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4(+) T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection.

View Article and Find Full Text PDF

General Motors (GM) investigated the financial impact of their occupational health clinics located within their automotive plants, creating a comparison between plants. This allows the firm to make business decisions regarding services offered and responsibilities assigned to the clinics. GM-developed codes were mapped to CPT codes and clinics were surveyed and observed for other duties.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) infection has been associated with perturbations of plasmacytoid dendritic cells (PDC), including diminished frequencies in the peripheral blood and reduced production of type I interferons (IFNs) in response to in vitro stimulation. However, recent data suggest a paradoxical increase in production of type 1 interferons in vivo in HIV-infected patients compared to uninfected controls. Using a flow cytometric assay to detect IFN-alpha-producing cells within unseparated peripheral blood mononuclear cells, we observed that short-term interruptions of antiretroviral therapy are sufficient to result in significantly reduced IFN-alpha production by PDC in vitro in response to CpG A ligands or inactivated HIV particles.

View Article and Find Full Text PDF

A microsphere-based immunoassay (MIA) was previously developed that is capable of determining the presence of anti-West Nile (WN) virus or anti-St. Louis encephalitis (SLE) virus immunoglobulin M (IgM) antibodies in human serum or cerebrospinal fluid. The original data set on which the classification rules were based comprised 491 serum specimens obtained from the serum bank at the Division of Vector-Borne Infectious Diseases of the Centers for Disease Control and Prevention (DVBID).

View Article and Find Full Text PDF

Since the introduction of West Nile virus into the United States in 1999, there has been a greater awareness of arboviruses, consequently, diagnostic testing for West Nile virus and other arboviruses has increased both in U.S. and international public health laboratories.

View Article and Find Full Text PDF

Virus-specific CD4+ T-cell responses are thought to be required for the induction and maintenance of many effective CD8+ T-cell and B-cell immune responses in experimental animals and humans. Although the presence of human immunodeficiency virus (HIV)-specific CD4+ T cells has been documented in patients at all stages of HIV infection, many fundamental questions regarding their frequency and function remain. A 10-color, 12-parameter flow cytometric panel was utilized to examine the frequency, memory phenotype (CD27, CCR7, and CD45RA), and cytokine production (interleukin-2 [IL-2], gamma interferon, and tumor necrosis factor alpha) of CD4+ T cells specific for HIV antigens as well as for adenovirus, Epstein-Barr virus (EBV), influenza H1N1 virus, influenza H3N2 virus, cytomegalovirus, varicella-zoster virus (VZV), and tetanus toxoid in normal controls, long-term nonprogressors (LTNP), and HIV-infected patients with progressive disease on or off therapy.

View Article and Find Full Text PDF

Early clearance of a thymidine kinase-deficient strain of herpes simplex virus type 2 from the female genital tract required T-cell-produced gamma interferon (IFN-gamma). Transfer of activated CD8+ T cells to irradiated C57BL/6 mice resulted in rapid virus clearance, but clearance was greatly delayed in recipients deficient in the IFN-gamma receptor (IFN-gammaR). Early virus clearance was demonstrated in radiation chimeras in which IFN-gammaR expression was limited to parenchymal cells, but resolution was significantly delayed in chimeras deficient in IFN-gammaR expression and chimeras expressing IFN-gammaR only on hematopoietic cells.

View Article and Find Full Text PDF

The effect of human immunodeficiency virus (HIV) infection and high-level HIV replication on the function of monocytes was investigated. HIV-positive patients had elevated levels of spontaneous production of some or all of the monocyte proinflammatory cytokines measured (interleukin-1beta [IL-1beta], IL-6, and tumor necrosis factor alpha [TNF-alpha]) compared to uninfected controls. In patients on therapy with high frequencies of monocytes producing proinflammatory cytokines, this frequency was diminished in the context of viremia during an interruption of therapy.

View Article and Find Full Text PDF

West Nile (WN) virus was introduced into the United States in 1999, when the first human cases of WN fever and encephalitis appeared in New York City. From there, the virus has spread throughout North America, in some areas cocirculating with the related flavivirus St. Louis encephalitis (SLE) virus.

View Article and Find Full Text PDF

A diagnostic algorithm was developed to differentiate between human infections of West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) using positive-to-negative (P/N) ratios derived from the immunoglobulin M capture enzyme-linked immunosorbent assay (MAC-ELISA). To validate this algorithm, we tested 1,418 serum and cerebrospinal fluid (CSF) samples from confirmed WNV and SLEV infections collected during the WNV epidemic of 2002 in the United States.

View Article and Find Full Text PDF

Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored.

View Article and Find Full Text PDF

The emergence of West Nile (WN) virus in New York and the surrounding area in 1999 prompted an increase in surveillance measures throughout the United States, including the screening of sentinel chicken flocks for antibodies. An enzyme-linked immunosorbent assay (ELISA) for the detection of chicken immunoglobulin M (IgM) to WN virus was developed, standardized, and characterized as a rapid and sensitive means to detect WN viral antibodies in sentinel flocks. Serum specimens from experimentally infected chickens were analyzed by using this assay, and IgM was detected as early as 3 to 7 days postinfection.

View Article and Find Full Text PDF