Publications by authors named "Alison Hirukawa"

Article Synopsis
  • Scientists studied how a gene called Ezh2 affects the beginnings of breast cancer.
  • They found that when Ezh2 is missing, cells couldn't grow properly and showed signs of being healthy rather than cancerous.
  • The research suggests that blocking Ezh2 might help treat early breast cancer by changing certain signaling pathways in the cells.
View Article and Find Full Text PDF

Mechanistic target of rapamycin complex 1 (mTORC1) is a master modulator of cellular growth, and its aberrant regulation is recurrently documented within breast cancer. While the small GTPase Rheb1 is the canonical activator of mTORC1, Rheb1-independent mechanisms of mTORC1 activation have also been reported but have not been fully understood. Employing multiple transgenic mouse models of breast cancer, we report that ablation of Rheb1 significantly impedes mammary tumorigenesis.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2).

View Article and Find Full Text PDF

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer.

View Article and Find Full Text PDF

Emerging evidence has illustrated the importance of epigenomic reprogramming in cancer, with altered post-translational modifications of histones contributing to pathogenesis. However, the contributions of histone modifiers to breast cancer progression are unclear, and how these processes vary between molecular subtypes has yet to be adequately addressed. Here we report that genetic or pharmacological targeting of the epigenetic modifier Ezh2 dramatically hinders metastatic behaviour in both a mouse model of breast cancer and patient-derived xenografts reflective of the Luminal B subtype.

View Article and Find Full Text PDF