Publications by authors named "Alison Haymaker"

Microcrystal electron diffraction, commonly referred to as MicroED, has become a powerful tool for high-resolution structure determination. The method makes use of cryogenic transmission electron microscopes to collect electron diffraction data from crystals that are several orders of magnitude smaller than those used by other conventional diffraction techniques. MicroED has been used on a variety of samples including soluble proteins, membrane proteins, small organic molecules, and materials.

View Article and Find Full Text PDF

We report new advancements in the determination and high-resolution structural analysis of beam-sensitive metal organic frameworks (MOFs) using microcrystal electron diffraction (MicroED) coupled with focused ion beam milling at cryogenic temperatures (cryo-FIB). A microcrystal of the beam-sensitive MOF, ZIF-8, was ion-beam milled in a thin lamella approximately 150 nm thick. MicroED data were collected from this thin lamella using an energy filter and a direct electron detector operating in counting mode.

View Article and Find Full Text PDF

Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG) DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection.

View Article and Find Full Text PDF

Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG) DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection.

View Article and Find Full Text PDF

The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure-property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry.

View Article and Find Full Text PDF