Herpesviruses are able to disseminate in infected hosts despite development of a strong immune response. Their ability to do this relies on a specialized process called cell-to-cell spread in which newly assembled virus particles are trafficked to plasma membrane surfaces that abut adjacent uninfected cells. The mechanism of cell-to-cell spread is obscure, and little is known about whether or how it is regulated in different cells.
View Article and Find Full Text PDFHerpes simplex virus (HSV) and varicella-zoster virus (VZV) are both members of the alphaherpesvirus subfamily but belong to different genera. Substitution of the HSV-1 UL34 coding sequence with that of its VZV homolog, open reading frame 24 (ORF24), results in a virus that has defects in viral growth, spread, capsid egress, and nuclear lamina disruption very similar to those seen in a UL34-null virus despite normal interaction between ORF24 protein and HSV pUL31 and proper localization of the nuclear egress complex at the nuclear envelope. Minimal selection for growth in cell culture resulted in viruses that grew and spread much more efficiently that the parental chimeric virus.
View Article and Find Full Text PDF