There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes.
View Article and Find Full Text PDFDrug-induced kidney injury (DIKI) is a major concern in both drug development and clinical practice. There is an unmet need for biomarkers of glomerular damage and more distal renal injury in the loop of Henle and the collecting duct (CD). A cross-laboratory program to identify and characterize urinary microRNA (miRNA) patterns reflecting tissue- or pathology-specific DIKI was conducted.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) cultured in the presence of LIF occupy a ground state with highly active pluripotency-associated transcriptional and epigenetic circuitry. However, ground state pluripotency in some inbred strain backgrounds is unstable in the absence of ERK1/2 and GSK3 inhibition. Using an unbiased genetic approach, we dissect the basis of this divergent response to extracellular cues by profiling gene expression and chromatin accessibility in 170 genetically heterogeneous mESCs.
View Article and Find Full Text PDFZileuton is an orally active inhibitor of leukotriene synthesis for maintenance treatment of asthma, for which clinical usage has been associated with idiosyncratic liver injury. Mechanistic understanding of zileuton toxicity is hampered by the rarity of the cases and lack of an animal model. A promising model for mechanistic study of rare liver injury is the Diversity Outbred (J:DO) mouse population, with genetic variation similar to that found in humans.
View Article and Find Full Text PDFCurr Environ Health Rep
June 2020
Purpose Of Review: There is a critical need for sensitive biomarkers of renal disease and progression. Micro(mi)RNAs are attractive as next-generation biomarkers in kidney disease, particularly as urine miRNAs can inform kidney function and cellular integrity. This review summarizes recent epidemiologic and toxicologic advances using urinary miRNAs and exosomal miRNAs as novel biomarkers of chemical exposure and of kidney damage and disease.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small RNAs that regulate mRNA expression and have been targeted as biomarkers of organ damage and disease. To explore the utility of miRNAs to assess injury to specific tissues, a tissue atlas of miRNA abundance was constructed. The at tlas of issue-specific and nriched (RATEmiRs) catalogues miRNA sequencing data from 21 and 23 tissues in male and female Sprague-Dawley rats, respectively.
View Article and Find Full Text PDFRobust genomic approaches are now available to realize improvements in efficiencies and translational relevance of cancer risk assessments for drugs and chemicals. Mechanistic and pathway data generated via genomics provide opportunities to advance beyond historical reliance on apical endpoints of uncertain human relevance. Published research and regulatory evaluations include many examples for which genomic data have been applied to address cancer risk assessment as a health protection endpoint.
View Article and Find Full Text PDFDiscovery and qualification of novel biomarkers with improved specificity and sensitivity for detection of xenobiotic-induced injuries is an area of active research across multiple sectors. However, the majority of efforts in this arena have used genetically limited rodent stocks that lack variability in xenobiotic responses inherent to genetically heterogeneous human populations. In this study, genetically diverse Diversity Outbred (DO) mice were used as a surrogate for human clinical populations to investigate performance of urinary kidney biomarkers against classical preclinical kidney injury biomarkers (blood urea nitrogen [BUN] and serum creatinine).
View Article and Find Full Text PDFBackground: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment.
Objectives: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models.
The overarching theme of the 2016 Society of Toxicology Pathology's Annual Symposium was "The Basis and Relevance of Variation in Toxicologic Responses." Session 4 focused on genetic variation as a potential source for variability in toxicologic responses within nonclinical toxicity studies and further explored how knowledge of genetic traits might enable targeted prospective and retrospective studies in drug development and human health risk assessment. In this session, the influence of both genetic sequence variation and epigenetic modifications on toxicologic responses and their implications for understanding risk were explored.
View Article and Find Full Text PDFBiomarker measurements that reliably correlate with tissue injury and that can be measured within accessible biofluids offer benefits in terms of cost, time, and convenience when assessing chemical and drug-induced toxicity in model systems or human cohorts. MicroRNAs (miRNAs) have emerged in recent years as a promising new class of biomarker for monitoring toxicity. Recent enthusiasm for miRNA biomarker research has been fueled by evidence that certain miRNAs are cell-type specific and are released during injury, thus raising the possibility of using biofluid-based miRNAs as a "liquid biopsy" that may be obtained by sampling extracellular fluids.
View Article and Find Full Text PDFIdentification of circulating microRNAs for the diagnosis of liver injury and as an indicator of underlying pathology has been the subject of recent investigations. While several studies have been conducted, with particular emphasis on miR-122, the timing of miRNA release into the circulation and anchoring to tissue pathology has not been systematically evaluated. In this study, miRNA profiling was conducted over a time course of hepatobiliary injury and repair using alpha-naphthylisothiocyanate (ANIT) and a proprietary compound, FP004BA.
View Article and Find Full Text PDFLiver mitochondria affected by drugs can be released into circulation and serve as biomarkers for drug-induced liver injury (DILI). The tissue specificity of ALT was improved by differentiating cytosolic ALT1 and mitochondrial ALT2 isoforms released in circulation. Prior to ALT elevation, mitochondrial cytochrome c, OCT, GLDH, CPS1 and DNA were increased in circulation following DILI.
View Article and Find Full Text PDFRecent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled "Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals" in Washington, D.C.
View Article and Find Full Text PDFSignificant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.
View Article and Find Full Text PDFConsumer use of herbal and dietary supplements has recently grown in the United States and, with increased use, reports of rare adverse reactions have emerged. One such supplement is green tea extract, containing the polyphenol epigallocatechin gallate (EGCG), which has been shown to be hepatotoxic at high doses in animal models. The Drug-Induced Liver Injury Network has identified multiple patients who have experienced liver injury ascribed to green tea extract consumption and the relationship to dose has not been straightforward, indicating that differences in sensitivity may contribute to the adverse response in susceptible people.
View Article and Find Full Text PDFBackground: There are currently no serum biomarkers capable of distinguishing elevations in serum alanine aminotransferase (ALT) that portend serious liver injury potential from benign elevations such as those occurring during cholestyramine treatment. The aim of the research was to test the hypothesis that newly proposed biomarkers of hepatotoxicity would not significantly rise in serum during elevations in serum ALT associated with cholestyramine treatment, which has never been associated with clinically relevant liver injury.
Methods: In a double-blind placebo-controlled trial, cholestyramine (8g) was administered for 11 days to healthy adult volunteers.
A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response.
View Article and Find Full Text PDF