Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs.
View Article and Find Full Text PDFAberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs.
View Article and Find Full Text PDFAims: Vascular aging is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular aging, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular aging.
View Article and Find Full Text PDFAortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy.
View Article and Find Full Text PDFAims: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease.
View Article and Find Full Text PDFAims: Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAβG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis.
View Article and Find Full Text PDFAccumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2) induce senescence of human VSMCs, associated with persistent telomeric DNA damage.
View Article and Find Full Text PDFRationale: Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis and features of plaque instability, in part, through lipid-mediated oxidative DNA damage and telomere dysfunction. SIRT6 (Sirtuin 6) is a nuclear deacetylase involved in DNA damage response signaling, inflammation, and metabolism; however, its role in regulating VSMC senescence and atherosclerosis is unclear.
Objective: We examined SIRT6 expression in human VSMCs, the role, regulation, and downstream pathways activated by SIRT6, and how VSMC SIRT6 regulates atherogenesis.
Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown.
View Article and Find Full Text PDFObjective: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance.
View Article and Find Full Text PDFObjective: MARK4 (microtubule affinity-regulating kinase 4) regulates NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome activation. The aim of the study is to examine the role of MARK4 in hematopoietic cells during atherosclerosis.
Methods And Results: We show increased MARK4 expression in human atherosclerotic lesions compared with adjacent areas.
Arterioscler Thromb Vasc Biol
June 2019
Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA.
View Article and Find Full Text PDFCirc Genom Precis Med
February 2019
Background: The Asp358Ala variant (rs2228145; A>C) in the IL (interleukin)-6 receptor ( IL6R) gene has been implicated in the development of abdominal aortic aneurysms (AAAs), but its effect on AAA growth over time is not known. We aimed to investigate the clinical association between the IL6R-Asp358Ala variant and AAA growth and to assess the effect of blocking the IL-6 signaling pathway in mouse models of aortic aneurysm rupture or dissection.
Methods: Using data from 2863 participants with AAA from 9 prospective cohorts, age- and sex-adjusted mixed-effects linear regression models were used to estimate the association between the IL6R-Asp358Ala variant and annual change in AAA diameter (mm/y).
Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points.
View Article and Find Full Text PDFBackground: Atherosclerotic plaques demonstrate extensive accumulation of oxidative DNA damage, predominantly as 8-oxoguanine (8oxoG) lesions. 8oxoG is repaired by base excision repair enzymes; however, the mechanisms regulating 8oxoG accumulation in vascular smooth muscle cells (VSMCs) and its effects on their function and in atherosclerosis are unknown.
Methods: We studied levels of 8oxoG and its regulatory enzymes in human atherosclerosis, the mechanisms regulating 8oxoG repair and the base excision repair enzyme 8oxoG DNA glycosylase I (OGG1) in VSMCs in vitro, and the effects of reducing 8oxoG in VSMCs in atherosclerosis in ApoE mice.
Objective: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.
View Article and Find Full Text PDFObjective: Current experimental models of abdominal aortic aneurysm (AAA) do not accurately reproduce the major features of human AAA. We hypothesized that blockade of TGFβ (transforming growth factor-β) activity-a guardian of vascular integrity and immune homeostasis-would impair vascular healing in models of nondissecting AAA and would lead to sustained aneurysmal growth until rupture.
Approach And Results: Here, we test this hypothesis in the elastase-induced AAA model in mice.
Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including cardiovascular and Alzheimer's disease. Here we show that microtubule-affinity regulating kinase 4 (MARK4) binds to NLRP3 and drives it to the microtubule-organizing centre, enabling the formation of one large inflammasome speck complex within a single cell. MARK4 knockdown or knockout, or disruption of MARK4-NLRP3 interaction, impairs NLRP3 spatial arrangement and limits inflammasome activation.
View Article and Find Full Text PDFRationale: Diverse B cell responses and functions may be involved in atherosclerosis. Protective antibody responses, such as those against oxidized lipid epitopes, are thought to mainly derive from T cell-independent innate B cell subsets. In contrast, both pathogenic and protective roles have been associated with T cell-dependent antibodies, and their importance in both humans and mouse models is still unclear.
View Article and Find Full Text PDFType-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2.
View Article and Find Full Text PDFSplenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (T) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-T cells, leading to PDL1-mediated suppression of T cell motility, alteration of T cell differentiation, reduced T abundance and suppression of the proatherogenic T response.
View Article and Find Full Text PDFBackground: Although vascular smooth muscle cell (VSMC) proliferation is implicated in atherogenesis, VSMCs in advanced plaques and cultured from plaques show evidence of VSMC senescence and DNA damage. In particular, plaque VSMCs show shortening of telomeres, which can directly induce senescence. Senescence can have multiple effects on plaque development and morphology; however, the consequences of VSMC senescence or the mechanisms underlying VSMC senescence in atherosclerosis are mostly unknown.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
August 2015
Objective: To determine the role of regulatory B cell-derived interleukin (IL)-10 in atherosclerosis.
Approach And Results: We created chimeric Ldlr(-/-) mice with a B cell-specific deficiency in IL-10, and confirmed that purified B cells stimulated with lipopolysaccharide failed to produce IL-10 compared with control Ldlr(-/-) chimeras. Mice lacking B-cell IL-10 demonstrated enhanced splenic B-cell numbers but no major differences in B-cell subsets, T cell or monocyte distribution, and unchanged body weights or serum cholesterol levels compared with control mice.
Background: Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive.
Methods And Results: Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis.