Publications by authors named "Alison E King"

Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral-associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.

View Article and Find Full Text PDF

Sustainability of agricultural production and mitigation of global warming rely on the regeneration of soil organic carbon (SOC), in particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) forms. We conducted a global systematic meta-analysis of the effects of regenerative management practices on SOC, POC, and MAOC in cropland, finding: 1) no-till (NT) and cropping system intensification increase SOC (11.3% and 12.

View Article and Find Full Text PDF

More diverse crop rotations have been promoted for their potential to remediate the range of ecosystem services compromised by biologically simplified grain-based agroecosystems, including increasing soil organic carbon (SOC). We hypothesized that functional diversity offers a more predictive means of characterizing the impact of crop rotations on SOC concentrations than species diversity per se. Furthermore, we hypothesized that functional diversity can either increase or decrease SOC depending on its associated carbon (C) input to soil.

View Article and Find Full Text PDF