Publications by authors named "Alison E Gardner"

Purpose: The gold standard for identification of post-zygotic variants (PZVs) is droplet digital polymerase chain reaction or high-depth sequencing across multiple tissues types. These approaches are yet to be systematically implemented for monogenic disorders. We developed PZV detection pipelines for correct classification of de novo variants.

View Article and Find Full Text PDF

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions.

View Article and Find Full Text PDF
Article Synopsis
  • Aicardi Syndrome (AIC) is a rare neurological disorder characterized by a combination of observable features such as the absence of the corpus callosum, specific eye abnormalities, and infantile seizures.
  • Recent studies revised the diagnostic criteria to include more phenotypes and revealed that AIC predominantly affects females, although a specific X-linked genetic cause remains unidentified.
  • Genetic analysis of affected individuals uncovered unique variants in different genes and indicated that AIC may involve various genetic factors that influence critical pathways in brain development.
View Article and Find Full Text PDF

PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance.

View Article and Find Full Text PDF

Objective: To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients.

Methods: We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated.

View Article and Find Full Text PDF

The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders.

View Article and Find Full Text PDF

USP9X is an X-chromosome gene that escapes X-inactivation. Loss or compromised function of USP9X leads to neurodevelopmental disorders in males and females. While males are impacted primarily by hemizygous partial loss-of-function missense variants, in females de novo heterozygous complete loss-of-function mutations predominate, and give rise to the clinically recognisable USP9X-female syndrome.

View Article and Find Full Text PDF

Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer.

View Article and Find Full Text PDF

Cerebral palsy (CP) is the most frequent movement disorder of childhood affecting 1 in 500 live births in developed countries. We previously identified likely pathogenic de novo or inherited single nucleotide variants (SNV) in 14% (14/98) of trios by exome sequencing and a further 5% (9/182) from evidence of outlier gene expression using RNA sequencing. Here, we detected copy number variants (CNV) from exomes of 186 unrelated individuals with CP (including our original 98 trios) using the CoNIFER algorithm.

View Article and Find Full Text PDF

The majority of epilepsies are focal in origin, with seizures emanating from one brain region. Although focal epilepsies often arise from structural brain lesions, many affected individuals have normal brain imaging. The etiology is unknown in the majority of individuals, although genetic factors are increasingly recognized.

View Article and Find Full Text PDF

Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur.

View Article and Find Full Text PDF

The progressive myoclonus epilepsies (PMEs) are a group of predominantly recessive disorders that present with action myoclonus, tonic-clonic seizures, and progressive neurological decline. Many PMEs have similar clinical presentations yet are genetically heterogeneous, making accurate diagnosis difficult. A locus for PME was mapped in a consanguineous family with a single affected individual to chromosome 17q21.

View Article and Find Full Text PDF

We characterized an autosomal-recessive syndrome of focal epilepsy, dysarthria, and mild to moderate intellectual disability in a consanguineous Arab-Israeli family associated with subtle cortical thickening. We used multipoint linkage analysis to map the causative mutation to a 3.2 Mb interval within 16p13.

View Article and Find Full Text PDF

Background: The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene.

View Article and Find Full Text PDF

The 16p13.3 breakpoints of two de novo translocations of chromosome 16, t(1;16) and t(14;16), were shown by initial mapping studies to have physically adjacent breakpoints. The translocations were ascertained in patients with abnormal phenotypes characterized by predominant epilepsy in one patient and mental retardation in the other.

View Article and Find Full Text PDF

Loss of heterozygosity (LOH) of chromosome 16q24.3 is a common genetic alteration observed in invasive ductal and lobular breast carcinomas. We constructed a physical map and generated genomic DNA sequence data spanning 2.

View Article and Find Full Text PDF

Numerous cytogenetic and molecular studies of breast cancer have identified frequent loss of heterozygosity (LOH) of the long arm of human chromosome 16. On the basis of these data, the likely locations of breast cancer tumor suppressor genes are bands 16q22.1 and 16q24.

View Article and Find Full Text PDF