The Hog1 stress-activated protein kinase (SAPK) is a key mediator of stress resistance and virulence in Candida albicans. Hog1 activation via phosphorylation of the canonical TGY motif is mediated by the Pbs2 MAPKK, which itself is activated by the Ssk2 MAPKKK. Although this three-tiered SAPK signalling module is well characterised, it is unclear how Hog1 activation is regulated in response to different stresses.
View Article and Find Full Text PDFTriage is a process by which patients are assessed, classified, and sorted based on their presenting complaint and clinical urgency, providing assurance for timely access to emergency care. The goal is to get the right person to the right place, in the right amount of time, for the right reason, and within the context of resource availability. In many countries, a standardized triage system, underpinned through the use of guidelines, is used to provide clinicians with support and guidance.
View Article and Find Full Text PDFPeroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote HO signal transduction, including HO-induced activation of P38 MAPK. Prdxs form HO-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the HO-sensing cysteine of the Prdx.
View Article and Find Full Text PDFMany microfluidic processes rely heavily on precise temperature control. Though internally-contained heaters have been developed using traditional fabrication methods, they are limited in their ability to isothermally heat a precisely defined volume. Advances in 3D printing have led to high resolution printers capable of using bio-compatible materials and achieving geometry resolutions near 20 μm.
View Article and Find Full Text PDFThe ability of pathogenic fungi to obtain essential nutrients from the host is vital for virulence. In Candida albicans, acquisition of the macronutrient phosphate is regulated by the Pho4 transcription factor and is important for both virulence and resistance to host-encountered stresses. All cells store phosphate in the form of polyphosphate (polyP), a ubiquitous polymer comprising tens to hundreds of phosphate residues.
View Article and Find Full Text PDFStudents often bring laptops to university classes, however, they do not limit their laptop use to class-related activity. Off-task laptop use occurs frequently in university classrooms and this use negatively impacts learning. The present study addresses whether potential benefits of class-related laptop use might mitigate the costs of off-task laptop activity.
View Article and Find Full Text PDFObjective: Emergency preparedness is a developing specialty with a limited evidence base. Published literature primarily offers a retrospective view of experience, with few studies examining and understanding the individual lived experience of practitioners prospectively. This study explores paramedics' lived experience of emergency preparedness and applies that learning.
View Article and Find Full Text PDFThe ability of fungal pathogens to survive hostile environments within the host depends on rapid and robust stress responses. Stress-activated protein kinase (SAPK) pathways are conserved MAPK signaling modules that promote stress adaptation in all eukaryotic cells, including pathogenic fungi. Activation of the SAPK occurs via the dual phosphorylation of conserved threonine and tyrosine residues within a TGY motif located in the catalytic domain.
View Article and Find Full Text PDFhas recently emerged as an important, multidrug-resistant fungal pathogen of humans. Comparative studies indicate that despite high levels of genetic divergence, is as virulent as the most pathogenic member of the genus, However, key virulence attributes of , such as morphogenetic switching, are not utilized by , indicating that this emerging pathogen employs alternative strategies to infect and colonize the host. An important trait required for the pathogenicity of many fungal pathogens is the ability to adapt to host-imposed stresses encountered during infection.
View Article and Find Full Text PDFErythritol production is a unique response to hyperosmotic stress that is observed in a small group of yeasts, including Yarrowia lipolytica. This study investigated whether this unusual mechanism is regulated by the HOG pathway, well described in Saccharomyces cerevisiae. The gene YALI0E25135g was identified as the Y.
View Article and Find Full Text PDFIn all eukaryotic kingdoms, mitogen-activated protein kinases (MAPKs) play critical roles in cellular responses to environmental cues. These MAPKs are activated by phosphorylation at highly conserved threonine and tyrosine residues in response to specific inputs, leading to their accumulation in the nucleus and the activation of their downstream targets. A specific MAP kinase can regulate different downstream targets depending on the nature of the input signal, thereby raising a key question: what defines the stress-specific outputs of MAP kinases? We find that the Hog1 MAPK contributes to nitrosative-stress resistance in even though it displays minimal stress-induced phosphorylation under these conditions.
View Article and Find Full Text PDFStress-activated protein kinase (SAPK) pathways are evolutionarily conserved eukaryotic signalling modules that are essential for the virulence of human pathogenic fungi. The Hog1 SAPK in Candida albicans is robustly phosphorylated in response to a number of host-imposed stresses, and is essential for virulence. The current dogma is that stress-induced phosphorylation activates the SAPK, and promotes its nuclear accumulation that is necessary for the expression of SAPK-dependent stress-protective genes.
View Article and Find Full Text PDFThe Ypd1 phosphorelay protein is a central constituent of fungal two-component signal transduction pathways. Inhibition of Ypd1 in Saccharomyces cerevisiae and Cryptococcus neoformans is lethal due to the sustained activation of the 'p38-related' Hog1 stress-activated protein kinase (SAPK). As two-component signalling proteins are not found in animals, Ypd1 is considered to be a prime antifungal target.
View Article and Find Full Text PDFDuring interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses.
View Article and Find Full Text PDFFree Radic Biol Med
June 2016
Reactive oxygen species, such as H2O2, can damage cells but also promote fundamental processes, including growth, differentiation and migration. The mechanisms allowing cells to differentially respond to toxic or signaling H2O2 levels are poorly defined. Here we reveal that increasing external H2O2 produces a bi-phasic response in intracellular H2O2.
View Article and Find Full Text PDFThe depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. β-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target β-1,2- and β-1,4-mannosidic linkages.
View Article and Find Full Text PDFThe structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B.
View Article and Find Full Text PDFCandida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C.
View Article and Find Full Text PDFAs a more selectively reactive oxygen species, H2O2 (hydrogen peroxide) has been co-opted as a signalling molecule, but high levels can still lead to lethal amounts of cell damage. 2-Cys Prxs (peroxiredoxins) are ubiquitous thioredoxin peroxidases which utilize reversibly oxidized catalytic cysteine residues to reduce peroxides. As such, Prxs potentially make an important contribution to the repertoire of cell defences against oxidative damage.
View Article and Find Full Text PDFH2O2 can cause oxidative damage associated with age-related diseases such as diabetes and cancer but is also used to initiate diverse responses, including increased antioxidant gene expression. Despite significant interest, H2O2-signaling mechanisms remain poorly understood. Here, we present a mechanism for the propagation of an H2O2 signal that is vital for the adaptation of the model yeast, Schizosaccharomyces pombe, to oxidative stress.
View Article and Find Full Text PDF