Dopamine D1 receptor (D1R) function is regulated by membrane/lipid raft-resident protein caveolin-1 (Cav1). We examined whether altered expression of Cav1 in the dorsal striatum would affect self-administration of methamphetamine, an indirect agonist at the D1Rs. A lentiviral construct expressing Cav1 (LV-Cav1) or containing a short hairpin RNA against Cav1 (LV-shCav1) was used to overexpress or knock down Cav1 expression respectively, in the dorsal striatum.
View Article and Find Full Text PDFThis study sought to determine if reducing dopamine D1 receptor (D1R) expression in the dorsal striatum (DS) via RNA-interference alters methamphetamine self-administration. A lentiviral construct containing a short hairpin RNA (shRNA) was used to knock down D1R expression (D1RshRNA). D1RshRNA in male rats increased responding for methamphetamine (i.
View Article and Find Full Text PDFCompulsive binge eating is a hallmark of binge eating disorder and bulimia nervosa and is implicated in some obesity cases. Eating disorders are sexually dimorphic, with females more often affected than males. Animal models of binge-like eating based on intermittent access to palatable food exist; but, little is known regarding sex differences or individual vulnerability in these models with respect to the reinforcing efficacy of food, the development of compulsive- and binge-like eating, or associated changes in whole-body metabolism or body composition.
View Article and Find Full Text PDFRationale: The ability of nicotine to suppress body weight is cited as a factor impacting smoking initiation and the failure to quit. Self-administered nicotine in male rats suppresses weight independent of food intake, suggesting that nicotine increases energy expenditure.
Objective: The current experiment evaluated the impact of self-administered nicotine on metabolism in rats using indirect calorimetry and body composition analysis.
Am J Physiol Regul Integr Comp Physiol
May 2016
Published research supports a role for central glucagon-like peptide 1 (GLP-1) signaling in suppressing food intake in rodent species. However, it is unclear whether GLP-1 neurons track food intake and contribute to satiety, and/or whether GLP-1 signaling contributes to stress-induced hypophagia. To examine whether GLP-1 neurons track intake volume, rats were trained to consume liquid diet (LD) for 1 h daily until baseline intake stabilized.
View Article and Find Full Text PDFBrain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system.
View Article and Find Full Text PDFSatiety signals arising from the gastrointestinal (GI) tract and related digestive organs during food ingestion and digestion are conveyed by vagal sensory afferents to the hindbrain nucleus of the solitary tract (NST). Two intermingled but chemically distinct NST neuronal populations have been implicated in meal size control: noradrenergic (NA) neurons that comprise the A2 cell group, and glucagon-like peptide-1 (GLP-1)-positive neurons. Previous results indicate that A2 neurons are activated in a meal size-dependent manner in rats that have been acclimated/entrained to a feeding schedule in order to increase meal size, whereas feeding under the same conditions does not activate GLP-1 neurons.
View Article and Find Full Text PDFPrenatal stress in humans is associated with psychiatric problems in offspring such as anxiety, depression, and schizophrenia. These same illnesses are also associated with neuronal nicotinic acetylcholine receptor (nAChR) dysfunction. Despite the known associations between prenatal stress exposure and offspring mental illness, and between mental illness and nAChR dysfunction, it is not known whether prenatal stress exposure impacts neuronal nAChRs.
View Article and Find Full Text PDFNeural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons.
View Article and Find Full Text PDF