Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'.
View Article and Find Full Text PDFThe anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain. It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix. ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.
View Article and Find Full Text PDFNeural activity in the claustrum has been associated with a range of vigilance states, yet the activity patterns and efficacy of synaptic communication of identified claustrum neurons have not been thoroughly determined. Here, we show that claustrum neurons projecting to the retrosplenial cortex are most active during synchronized cortical states such as non-rapid eye movement (NREM) sleep and are suppressed during increased cortical desynchronization associated with arousal, movement, and REM sleep. The efficacy of claustrocortical signaling is increased during NREM and diminished during movement due in part to increased cholinergic tone.
View Article and Find Full Text PDFIn this issue of Neuron, Chevée et al. (2022) performed extracellular electrophysiological recordings from claustrum neurons during a sensory selection task. They found that neural activity in the claustrum reflected future motor output rather than sensory inputs and that chemogenetic suppression of claustrum activity reduced motor impulsivity in this task.
View Article and Find Full Text PDFThe claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood.
View Article and Find Full Text PDF