Publications by authors named "Alison Cowie"

Symbiotic nitrogen fixation (SNF) is an energetically expensive process performed by bacteria during endosymbiotic relationships with plants. The bacteria require the plant to provide a carbon source for the generation of reductant to power SNF. While C-dicarboxylates (succinate, fumarate, and malate) appear to be the primary, if not sole, carbon source provided to the bacteria, the contribution of each C-dicarboxylate is not known.

View Article and Find Full Text PDF

In order to effectively manipulate rhizobium-legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available L-proline auxotrophs has limited our understanding of the role of L-proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described Sinorhizobium meliloti L-proline auxotroph.

View Article and Find Full Text PDF

The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)).

View Article and Find Full Text PDF

As a means of investigating gene function, we developed a robust transcription fusion reporter vector to measure gene expression in bacteria. The vector, pTH1522, was used to construct a random insert library for the Sinorhizobium meliloti genome. pTH1522 replicates in Escherichia coli and can be transferred to, but cannot replicate in, S.

View Article and Find Full Text PDF