Publications by authors named "Alison Costello"

To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. We attempted to decrease the intermolecular distance in this study by synthesizing cocrystals of simple benzoic acid coformers and dipyridyl-2,2'-bithiophene molecules to understand how the coformer identity and pyridine N atom placement affected solid-state properties.

View Article and Find Full Text PDF

To provide new insights for understanding the influence of B site cations on the structure in chlorometallate materials of the form ABCl, we report novel organic-inorganic hybrid metallates (OIHMs) incorporating histammonium (HistNH) dications and various transition-metal and main group B site cations. Single crystals of OIHMs with the basic formula (HistNHMCl, M = Fe, Co, Ni, Cu, Zn, Cd, Hg, Sb, Sn, Pb, Bi) were grown and their structures characterized by single-crystal X-ray crystallography. HistNHCoCl, HistNHZnCl, and HistNHSbCl were crystallized in a non-centrosymmetric space group and were subsequently studied with piezoresponse force microscopy (PFM).

View Article and Find Full Text PDF

We report the interaction between B-type tri-lacunary heteropolyoxotungstate anions and actinyl(V) cations in aqueous solution, yielding a greater understanding of the stability of the O≡An≡O(1+) linear dioxo actinide moiety. Previously we reported that B-α-[BiW(9)O(33)](9-) and B-α-[SbW(9)O(33)](9-) will react with NpO(2)(1+) to yield [(Np(3)W(4)O(15))(H(2)O)(3)(MW(9)O(33))(3)](18-) (M = Bi, or Sb). Single crystal structural characterisation of salts of these complexes revealed a core in which three Np(V) atoms interact with a central W(VI) atom through bridging oxo groups.

View Article and Find Full Text PDF

The effect of cholesterol (5-40mol%) on the magnetic induced orientation of sphingomyelin/cholesterol multilamellar vesicles (MLVs) was examined using static solid state (31)P NMR spectroscopy. The orientation was modeled assuming an ellipsoidal deformation of the vesicles and was monitored as a function of cholesterol concentration and temperature. In addition, the static (31)P chemical shift anisotropy (CSA) was used to assess the motional and dynamical changes occurring in the bilayer are reported.

View Article and Find Full Text PDF

In an effort to probe the structure, mechanism, and biochemical properties of metallo-beta-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable.

View Article and Find Full Text PDF

Metallo-beta-lactamases (MbetaLs) are zinc enzymes able to hydrolyze almost all beta-lactam antibiotics, rendering them inactive, at the same time endowing bacteria high levels of resistance. The design of inhibitors active against all classes of MbetaLs has been hampered by their structural diversity and by the heterogeneity in metal content in enzymes from different sources. BcII is the metallo-beta-lactamase from Bacillus cereus, which is found in both the mononuclear and dinuclear forms.

View Article and Find Full Text PDF

The impact of low cholesterol concentrations on an egg sphingomyelin bilayer is investigated using 31P magic angle spinning (MAS) NMR spectroscopy. The magnitude of the isotropic 31P MAS NMR line width is used to monitor the main gel to liquid crystalline phase transition, along with a unique gel phase pretransition. In addition, the 31P chemical shift anisotropy (CSA) and spin-spin relaxation times (T2), along with the effects of spinning speed, proton decoupling and magnetic field strength, are reported.

View Article and Find Full Text PDF

Metallo-beta-lactamases (MbetaLs) are bacterial Zn(II)-dependent hydrolases that confer broad-spectrum resistance to beta-lactam antibiotics. These enzymes can be subdivided into three subclasses (B1, B2 and B3) that differ in their metal binding sites and their characteristic tertiary structure. To date there are no clinically useful pan-MbetaL inhibitors available, mainly due to the unawareness of key catalytic features common to all MbetaL brands.

View Article and Find Full Text PDF

Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica.

View Article and Find Full Text PDF

The synthesis and characterization of a series of neo-pentoxide (OCH2C(CH3)3 or ONep) derivatives of group 3 and the lanthanide (Ln) series' metals were undertaken via an amide/alcohol exchange route. Surprisingly, the products isolated and characterized by single-crystal X-ray diffraction yielded isostructural species for every trivalent cation studied: [Ln(mu-ONep)2(ONep)]4 [Ln=Sc (1), Y (2), La (3), Ce (4), Pr (5), Nd (6), Sm (7), Eu (8), Gd (9), Tb (10), Dy (11), Ho (12), Er (13), Tm (14), Yb (15), Lu (16)]. Compounds 3, 4, 6, and 11 have been previously reported.

View Article and Find Full Text PDF

X-ray absorption spectroscopy was used to investigate the metal-binding sites of ImiS from Aeromonas veronii bv. sobria in catalytically active (1-Zn), product-inhibited (1-Zn plus imipenem), and inactive (2-Zn) forms. The first equivalent of zinc(II) was found to bind to the consensus Zn(2) site.

View Article and Find Full Text PDF

Extended X-ray absorption fine structure studies of the metallo-beta-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion.

View Article and Find Full Text PDF

In an effort to probe Co(II) binding to metallo-beta-lactamase CcrA, EPR, EXAFS, and (1)H NMR studies were conducted on CcrA containing 1 equiv (1-Co(II)-CcrA) and 2 equiv (Co(II)Co(II)-CcrA) of Co(II). The EPR spectra of 1-Co(II)-CcrA and Co(II)Co(II)-CcrA are distinct and indicate 5/6-coordinate Co(II) ions. The EPR spectra also reveal the absence of significant spin-exchange coupling between the Co(II) ions in Co(II)Co(II)-CcrA.

View Article and Find Full Text PDF

Lactonases from Bacillus species hydrolyze the N-acylhomoserine lactone (AHL) signaling molecules used in quorum-sensing pathways of many Gram-negative bacteria, including Pseudomonas aeruginosa and Erwinia carotovora, both significant pathogens. Because of sequence similarity, these AHL lactonases have been assigned to the metallo-beta-lactamase superfamily of proteins, which includes metalloenzymes of diverse activity, mechanism, and metal content. However, a recent study claims that AHL lactonase from Bacillus sp.

View Article and Find Full Text PDF

In an effort to structurally probe the metal binding site in VanX, electronic absorption, EPR, and extended x-ray absorption fine structure (EXAFS) spectroscopic studies were conducted on Co(II)-substituted VanX. Electronic spectroscopy revealed the presence of Co(II) ligand field transitions that had molar absorptivities of approximately 100 m(-1) cm(-1), which suggests that Co(II) is five-coordinate in Co(II)-substituted VanX. Low temperature EPR spectra of Co(II)-substituted VanX were simulated using spin Hamiltonian parameters of M(S) = |+/-1/2), E/D = 0.

View Article and Find Full Text PDF

l-Penicillamine (Pen) has been investigated as a ligand for metalloprotein design by examining the binding of Co(II) to the sequence NH(2)-KL(Pen)EGG.(Pen)IG(Pen)GA(Pen).GGW-CONH(2).

View Article and Find Full Text PDF

This study addresses, in detail, the orbital nature and the extent of metal-metal communication in the lowest emitting triplet state of Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) (where 4,4'-bpy = 4,4'-bipyridine) as well as the symmetry of the lowest (3)MLCT manifold in comparison to that of the ground state. All spectral evidence points to (1). a (3)MLCT excited manifold localized between a single Re(I) corner and an adjacent bridging ligand, (2).

View Article and Find Full Text PDF