Introduction: The emergence of a novel coronavirus, SARS-CoV-2, has highlighted the need for rapid, accurate, and point-of-care diagnostic testing. As of now, there is not enough testing capacity in the world to meet the stated testing targets, which are expected to skyrocket globally for broader testing during reopening.
Aim: This review focuses on the development of lab-on-chip biosensing platforms for diagnosis of COVID-19 infection.
Molecular diagnostics have traditionally relied on discrete biological substances as diagnostic markers. In recent years however, advances in on-chip biomarker screening technologies and data analytics have enabled signature-based diagnostics. Such diagnostics aim to utilize unique combinations of multiple biomarkers or diagnostic 'fingerprints' rather than discrete analyte measurements.
View Article and Find Full Text PDFWe report on a microsystem that couples high-throughput bacterial immunomagnetic capture to contact-free cell lysis using an alternating current magnetic field (AMF) to enable downstream molecular characterization of bacterial nucleic acids. Traditional methods for cell lysis rely on either dilutive chemical methods, expensive biological reagents, or imprecise physical methods. We present a microchip with a magnetic polymer substrate (Mag-Polymer microchip), which enables highly controlled, on-chip heating of biological targets following exposure to an AMF.
View Article and Find Full Text PDFMicrofluidics is an emerging field in diagnostics that allows for extremely precise fluid control and manipulation, enabling rapid and high-throughput sample processing in integrated micro-scale medical systems. These platforms are well-suited for both standard clinical settings and point-of-care applications. The unique features of microfluidics-based platforms make them attractive for early disease diagnosis and real-time monitoring of the disease and therapeutic efficacy.
View Article and Find Full Text PDFThe analysis of bacterial volatile organic compounds has gained attraction as a non-invasive way to identify disease-causing organisms, given that bacteria have unique metabolisms and volatile metabolic byproducts. In the present research, different adsorbent materials (Carbopack Y, X, B, Carboxen 1000 and Tenax TA), packed singularly or in combination, were compared in terms of sampling performance (sensitivity, repeatability and selectivity) for the extraction of standards and bacterial volatile metabolites in vitro (from Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). After extraction, bacterial volatile organic compounds were desorbed and analyzed in a comprehensive two-dimensional gas chromatography system coupled to a time-of-flight mass spectrometer (GC × GC-ToF MS).
View Article and Find Full Text PDFThe diagnosis of bloodstream infections presents numerous challenges, in part, due to the low concentration of pathogens present in the peripheral bloodstream. As an alternative to existing time-consuming, culture-based diagnostic methods for organism identification, microfluidic devices have emerged as rapid, high-throughput and integrated platforms for bacterial and fungal enrichment, detection, and characterization. This focused review serves to highlight and compare the emerging microfluidic platforms designed for the isolation of sepsis-causing pathogens from blood and suggest important areas for future research.
View Article and Find Full Text PDFWe present a QR code paper microfluidic colorimetric assay that can exploit the hardware and software on mobile devices, and circumvent sample preparation by directly targeting volatile biomarkers. Our platform is a printable microarray of well-defined reaction regions, which outputs an instant diagnosis by directing the user to a URL containing their test result, while simultaneously storing epidemiological data for remote access and bioinformatics. To assist in the rapid identification of Escherichia coli in bloodstream infections, we employed an existing colorimetric reagent (p-dimethylaminocinnamaldehyde) and adapted its use to detect volatile indole, a biomarker produced by E.
View Article and Find Full Text PDFWe demonstrate enhanced on-chip circulating tumor cell (CTC) detection through the incorporation of plasmonic-enhanced near-infrared (NIR) fluorescence screening. Specifically, the performance of plasmonic gold coated chips was evaluated on our previously reported immunomagnetic CTC capture system and compared to the performance of a regular chip. Three main performance metrics were evaluated: capture efficiency, capture reproducibility, and clinical efficacy.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2018
In this study, the volatile molecule profile of Streptococcus pneumoniae serotypes was evaluated using solid phase microextraction (SPME) and two dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). Here, seven serotypes (6B, 14, 15, 18C, 19F, 9V, and 23F) were analyzed in an isogenic background. We identified 13 core molecules associated with all seven serotypes, and seven molecules that were differentially produced between serotypes.
View Article and Find Full Text PDFThe identification of pathogen-specific volatile metabolic 'fingerprints' could lead to the rapid identification of disease-causing organisms either directly from ex vivo patient bio-specimens or from in vitro cultures. In the present study, we have evaluated the volatile metabolites produced by 100 clinical isolates belonging to ten distinct pathogen groups that, in aggregate, account for 90% of bloodstream infections, 90% of urinary tract infections, and 80% of infections encountered in the intensive care unit setting. Headspace volatile metabolites produced in vitro were concentrated using headspace solid-phase microextraction and analyzed via two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS).
View Article and Find Full Text PDFA major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.
View Article and Find Full Text PDFTurbidity is an internationally recognized criterion for assessing drinking water quality, because the colloidal particles in turbid water may harbor pathogens, chemically reduce oxidizing disinfectants, and hinder attempts to disinfect water with ultraviolet radiation. A turbidimeter is an electronic/optical instrument that assesses turbidity by measuring the scattering of light passing through a water sample containing such colloidal particles. Commercial turbidimeters cost hundreds or thousands of dollars, putting them beyond the reach of low-resource communities around the world.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2010
Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination alternatives for use in a contaminated drinking water supply. The parameters were as follows: (i) type of Bacillus spore surrogate (B. thuringiensis or B.
View Article and Find Full Text PDF