The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, RCSB.org), the US Worldwide Protein Data Bank (wwPDB, wwPDB.org) data center for the global PDB archive, provides access to the PDB data via its RCSB.
View Article and Find Full Text PDFApproximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH).
View Article and Find Full Text PDFNi-Fe-S-dependent carbon monoxide dehydrogenases (CODHs) are enzymes that interconvert CO and CO by using their catalytic Ni-Fe-S C-cluster and their Fe-S B- and D-clusters for electron transfer. CODHs are important in the microbiota of animals such as humans, ruminants, and termites because they can facilitate the use of CO and CO as carbon sources and serve to maintain redox homeostasis. The bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is responsible for acetate production via the Wood-Ljungdahl pathway, where acetyl-CoA is assembled from two CO-derived one-carbon units.
View Article and Find Full Text PDFCarbon monoxide dehydrogenase (CODH) plays an important role in the processing of the one‑carbon gases carbon monoxide and carbon dioxide. In CODH enzymes, these gases are channeled to and from the Ni-Fe-S active sites using hydrophobic cavities. In this work, we investigate these gas channels in a monofunctional CODH from Desulfovibrio vulgaris, which is unusual among CODHs for its oxygen-tolerance.
View Article and Find Full Text PDFGrowth of the cholera bacterium in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of biofilms include olyaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1.
View Article and Find Full Text PDFHistone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones.
View Article and Find Full Text PDF