Publications by authors named "Alison Bertuch"

Rare germline pathogenic variants (GPVs) in genes essential in telomere length maintenance and function have been implicated in two broad classes of human disease. The telomere biology disorders (TBDs) are a spectrum of life-threatening conditions, including bone marrow failure, liver and lung disease, cancer and other complications caused by GPVs in telomere maintenance genes that result in short and/or dysfunctional telomeres and reduced cellular replicative capacity. In contrast, cancer predisposition with long telomeres (CPLT) is a disorder associated with elevated risk of a variety of cancers, primarily melanoma, thyroid cancer, sarcoma, glioma and lymphoproliferative neoplasms caused by GPVs in shelterin complex genes that lead to excessive telomere elongation and increased cellular replicative capacity.

View Article and Find Full Text PDF

Diamond Blackfan anemia (DBA) is caused by germline heterozygous loss-of-function pathogenic variants (PVs) in ribosomal protein (RP) genes, most commonly and . In addition to red cell aplasia, individuals with DBA are at increased risk of various cancers. Importantly, the mechanism(s) underlying cancer predisposition are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent studies have expanded the list of these gene variants, leading to updates on surveillance and intervention strategies for at-risk children, including early hematopoietic stem cell transplantation.
  • * A 2023 expert panel provided new recommendations for monitoring these children, emphasizing personalized approaches based on genetic profiles, including regular check-ups and specialized testing like bone marrow examinations and gene sequencing.
View Article and Find Full Text PDF
Article Synopsis
  • Patients with telomere biology disorders (TBD) commonly experience severe liver diseases, and while liver transplantation (LT) is debated for these cases, this study aimed to evaluate patient outcomes and management strategies related to TBD-associated liver disease.
  • A total of 83 patients were analyzed, with 40 experiencing advanced liver disease; among them, 20 underwent LT, and notable factors like pulmonary issues and elevated bilirubin levels were linked to the advanced disease group.
  • Results showed that LT recipients had a 73% one-year survival rate and improved respiratory conditions in over half of the patients post-transplant, suggesting that a TBD diagnosis should not prevent consideration for LT.
View Article and Find Full Text PDF

The MECOM gene encodes multiple protein isoforms that are essential for hematopoietic stem cell self-renewal and maintenance. Germline MECOM variants have been associated with congenital thrombocytopenia, radioulnar synostosis and bone marrow failure; however, the phenotypic spectrum of MECOM-associated syndromes continues to expand and novel pathogenic variants continue to be identified. We describe eight unrelated patients who add to the previously known phenotypes and genetic defects of MECOM-associated syndromes.

View Article and Find Full Text PDF

Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). Currently, the primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs).

View Article and Find Full Text PDF

Telomere length maintenance is crucial to cancer cell immortality. Up to 15% of cancers utilize a telomerase-independent, recombination-based mechanism termed alternative lengthening of telomeres (ALT). The primary ALT biomarker is the C-circle, a type of circular DNA with extrachromosomal telomere repeats (cECTRs).

View Article and Find Full Text PDF
Article Synopsis
  • Acquired aplastic anemia (AA) is primarily caused by the destruction of early blood cells by autoreactive T cells, with some patients showing immune escape through the loss of specific HLA class I alleles.
  • In a study involving 505 AA patients, researchers identified 19 risk HLA alleles and 12 non-risk alleles, enhancing the understanding of HLA pathogenicity in the context of AA across different populations.
  • Although certain HLA alleles increase the risk of developing AA, they do not affect treatment responses, but higher-risk alleles, like HLA-B*14:02, correlate with increased clonal evolution in patients.
View Article and Find Full Text PDF

Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs).

View Article and Find Full Text PDF

Mutations in the TINF2 gene, encoding the shelterin protein TIN2, cause telomere shortening and the inherited bone marrow (BM) failure syndrome dyskeratosis congenita (DC). A lack of suitable model systems limits the mechanistic understanding of telomere shortening in the stem cells and thus hinders the development of treatment options for BM failure. Here, we endogenously introduced TIN2-DC mutations in human embryonic stem cells (hESCs) and human hematopoietic stem and progenitor cells (HSPCs) to dissect the disease mechanism and identify a gene-editing strategy that rescued the disease phenotypes.

View Article and Find Full Text PDF

The tumor suppressor p53 has well known roles in cancer development and germline cancer predisposition disorders, but increasing evidence supports the role of activation of this transcription factor in the pathogenesis of inherited bone marrow failure and chromosomal instability disorders. Here we report a patient with red cell aplasia, which was steroid responsive, as well as intellectual disability, seizures, microcephaly, short stature, cellular radiosensitivity, and normal telomere lengths, who had a germline heterozygous C-terminal frameshift variant in TP53 similar to others that activate the transcription factor. This is the third reported individual with a germline p53 activation syndrome, with several unique features that refine the clinical disease associated with these variants.

View Article and Find Full Text PDF

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion.

View Article and Find Full Text PDF
Article Synopsis
  • Shwachman-Diamond syndrome (SDS) is a rare inherited condition leading to bone marrow failure and an increased risk of leukemia, with a study analyzing 153 subjects to better understand age-related blood count changes.
  • The study found that neutrophil and hemoglobin counts increased with age until 18, while platelet counts and marrow cellularity declined, indicating complex hematologic behaviors in SDS.
  • Severe bone marrow failure requiring transplantation was common early in life, and 17% of subjects eventually developed myeloid malignancies, highlighting the need for careful monitoring of hematologic issues in SDS patients.
View Article and Find Full Text PDF

The North American Pediatric Aplastic Anemia Consortium (NAPAAC) is a group of pediatric hematologist-oncologists, hematopathologists, and bone marrow transplant physicians from 46 institutions in North America with interest and expertise in aplastic anemia, inherited bone marrow failure syndromes, and myelodysplastic syndromes. The NAPAAC Bone Marrow Failure Diagnosis and Care Guidelines Working Group was established with the charge of harmonizing the approach to the diagnostic workup of aplastic anemia in an effort to standardize best practices in the field. This document outlines the rationale for initial evaluations in pediatric patients presenting with signs and symptoms concerning for severe aplastic anemia.

View Article and Find Full Text PDF

Congenital disorders of glycosylation are a group of rare monogenic inborn errors of metabolism caused by defective glycoprotein and glycolipid glycan synthesis and attachment. Here, we present a patient with galactose epimerase deficiency, also known as GALE deficiency, accompanied by pancytopenia and immune dysregulation. She was first identified by an abnormal newborn screen for galactosemia with subsequent genetic evaluation due to pancytopenia and immune dysregulation.

View Article and Find Full Text PDF

To understand the mechanisms that mediate germline genetic leukemia predisposition, we studied the inherited ribosomopathy Shwachman-Diamond syndrome (SDS), a bone marrow failure disorder with high risk of myeloid malignancies at an early age. To define the mechanistic basis of clonal hematopoiesis in SDS, we investigate somatic mutations acquired by patients with SDS followed longitudinally. Here we report that multiple independent somatic hematopoietic clones arise early in life, most commonly harboring heterozygous mutations in EIF6 or TP53.

View Article and Find Full Text PDF
Article Synopsis
  • Telomere biology disorders are linked to shortened telomeres and genetic variants affecting telomere structure and function, notably involving the TPP1 gene, which is vital for telomerase activity.
  • Recent studies have produced conflicting evidence on whether haploinsufficiency (loss of one gene copy) contributes to these disorders.
  • This research presented two cases showing that even with genetic variants leading to reduced TPP1 function, cells can compensate and maintain normal telomere lengths by upregulating TPP1 protein levels.
View Article and Find Full Text PDF

Objective: To describe the clinical features, therapeutic interventions, and patient outcomes of gastrointestinal (GI) hemorrhage in individuals with a telomere biology disorder, including dyskeratosis congenita, Hoyeraal-Hreidarsson syndrome, Revesz syndrome, and Coats plus.

Study Design: Clinical Care Consortium for Telomere Associated Ailments members were invited to contribute data on individuals with telomere biology disorders at their institutions who experienced GI bleeding. Patient demographic, laboratory, imaging, procedural, and treatment information and outcomes were extracted from the medical record.

View Article and Find Full Text PDF

Germline telomere maintenance defects are associated with an increased incidence of inflammatory diseases in humans, yet whether and how telomere dysfunction causes inflammation are not known. Here, we show that telomere dysfunction drives pATM/c-ABL-mediated activation of the YAP1 transcription factor, up-regulating the major pro-inflammatory factor, pro-IL-18. The colonic microbiome stimulates cytosolic receptors activating caspase-1 which cleaves pro-IL-18 into mature IL-18, leading to recruitment of interferon (IFN)-γ-secreting T cells and intestinal inflammation.

View Article and Find Full Text PDF

Riboflavin transporter deficiency (RTD) (MIM #614707) is a neurogenetic disorder with its most common manifestations including sensorineural hearing loss, peripheral neuropathy, respiratory insufficiency, and bulbar palsy. Here, we present a 2-year-old boy whose initial presentation was severe macrocytic anemia necessitating multiple blood transfusions and intermittent neutropenia; he subsequently developed ataxia and dysarthria. Trio-exome sequencing detected compound heterozygous variants in SLC52A2 that were classified as pathogenic and a variant of uncertain significance.

View Article and Find Full Text PDF

Diamond-Blackfan anemia (DBA) is a ribosomopathy of variable expressivity and penetrance characterized by red cell aplasia, congenital anomalies, and predisposition to certain cancers, including early-onset colorectal cancer (CRC). DBA is primarily caused by a dominant mutation of a ribosomal protein (RP) gene, although approximately 20% of patients remain genetically uncharacterized despite exome sequencing and copy number analysis. Although somatic loss-of-function mutations in RP genes have been reported in sporadic cancers, with the exceptions of 5q-myelodysplastic syndrome (RPS14) and microsatellite unstable CRC (RPL22), these cancers are not enriched in DBA.

View Article and Find Full Text PDF

Background: Recent data show survival after matched unrelated donor (MUD) bone marrow transplantation (BMT) is similar to matched sibling procedures for young patients with severe aplastic anemia (SAA). Donor delays, risk of transplant-related mortality (TRM), and concern about chronic graft versus host disease raise questions about whether MUD BMT or immune suppression therapy (IST) should be preferred initial therapy for young patients lacking matched sibling donors.

Procedure: We performed a pilot trial to assess the feasibility of randomizing patients under age 26 with newly diagnosed SAA to receive IST versus MUD BMT.

View Article and Find Full Text PDF