Publications by authors named "Alison A Staton"

MicroRNAs (miRNAs) regulate gene expression by pairing with complementary sequences in the 3' untranslated regions (UTRs) of transcripts. Although the molecular mechanism underlying miRNA biogenesis and activity is becoming better understood, determining the physiological role of the interaction of an miRNA with its target remains a challenge. A number of methods have been developed to inhibit individual miRNAs, but it can be difficult to determine which specific targets are responsible for any observed phenotypes.

View Article and Find Full Text PDF

microRNAs (miRNAs) function as genetic rheostats to control gene output. Based on their role as modulators, it has been postulated that miRNAs canalize development and provide genetic robustness. Here, we uncover a previously unidentified regulatory layer of chemokine signaling by miRNAs that confers genetic robustness on primordial germ cell (PGC) migration.

View Article and Find Full Text PDF

microRNAs (miRNAs) represent approximately 4% of the genes in vertebrates, where they regulate deadenylation, translation, and decay of the target messenger RNAs (mRNAs). The integrated role of miRNAs to regulate gene expression and cell function remains largely unknown. Therefore, to identify the targets coordinately regulated by muscle miRNAs in vivo, we performed gene expression arrays on muscle cells sorted from wild type, dicer mutants, and single miRNA knockdown embryos.

View Article and Find Full Text PDF