Early microcalcification is a feature of coronary plaques with an increased propensity to rupture and to cause acute coronary syndromes. In this ex vivo imaging study of coronary artery specimens, the non-invasive imaging radiotracer, F-fluoride, was highly selective for hydroxyapatite deposition in atherosclerotic coronary plaque. Specifically, coronary F-fluoride uptake had a high signal to noise ratio compared with surrounding myocardium that makes it feasible to identify coronary mineralisation activity.
View Article and Find Full Text PDFArterial calcification is an important hallmark of cardiovascular disease and shares many similarities with skeletal mineralization. The bone-specific protein osteocalcin (OCN) is an established marker of vascular smooth muscle cell (VSMC) osteochondrogenic transdifferentiation and a known regulator of glucose metabolism. However, the role of OCN in controlling arterial calcification is unclear.
View Article and Find Full Text PDFA rapid and efficient method for the detection of hydroxyapatite (HAP) has been developed which shows superiority to existing well-established methods. This fluorescein-bisphosphonate probe is highly selective for HAP over other calcium minerals and is capable of detecting lower levels of calcification in cellular models than either hydrochloric acid-based calcium leaching assays or the Alizarin S stain. The probe has been shown to be effective in both in vitro vascular calcification models and in vitro bone calcification models.
View Article and Find Full Text PDFAryl-aldehydes containing ortho-substituted propiolate fragments react with hydroxylamine to afford carbinolamine intermediates that undergo intramolecular aza-conjugate addition reactions to afford N-hydroxy-2.3-dihydro-isoindolin-1-ones that can be reduced to their corresponding isoindolin-1-ones and isoindoles.
View Article and Find Full Text PDF