In this review by TC- 282 CCL, a comprehensive examination of various facets of chloride ingress in calcined clay-based concrete in aggressive chloride-rich environments is presented due to its significance in making reinforced concrete structures susceptible to chloride-induced corrosion damages. The review presents a summary of available literature focusing on materials characteristics influencing the chloride resistance of calcined clay-based concrete, such as different clay purity, kaolinite content and other clay minerals, underscoring the significance of pore refinement, pore solution composition, and chloride binding mechanisms. Further, the studies dealing with the performance at the concrete scale, with a particular emphasis on transport properties, curing methods, and mix design, are highlighted.
View Article and Find Full Text PDFThe hollow cylinder method was used to estimate the expansion stress that can occur in concrete due to the crystallisation pressure caused by the formation of ettringite and/or gypsum during external sulphate attack. Hardened cement paste hollow cylinders prepared with Portland cement were mounted in stress cells and exposed to sodium sulphate solutions with two different concentrations (3.0 g L SO and 30.
View Article and Find Full Text PDFDurability predictions of concrete structures are derived from experience-based requirements and descriptive exposure classes. To support durability predictions, a numerical model related to the carbonation resistance of concrete was developed. The model couples the rate of carbonation with the drying rate.
View Article and Find Full Text PDF