Publications by authors named "Alisa L Katzen"

Successful development of a multicellular organism depends on the finely tuned orchestration of cell proliferation, differentiation and apoptosis from embryogenesis through adulthood. The MYB-gene family encodes sequence-specific DNA-binding transcription factors that have been implicated in the regulation of both normal and neoplastic growth. The Drosophila Myb protein, DMyb (and vertebrate B-Myb protein), has been shown to be part of the dREAM/MMB complex, a large multi-subunit complex, which in addition to four Myb-interacting proteins including Mip130, contains repressive E2F and pRB proteins.

View Article and Find Full Text PDF

The Drosophila Myb protein, DMyb, is a transcription factor important for cell proliferation and development. Unlike the mRNAs produced by mammalian myb genes, Drosophila myb transcripts do not fluctuate substantially during the cell cycle. A comprehensive analysis of the localization and degradation of the DMyb protein has now revealed that DMyb is present in nuclei during S phase of all mitotically active tissues throughout embryogenesis and larval development.

View Article and Find Full Text PDF

Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate family of Myb genes, which encode transcription factors involved in regulatory decisions affecting cell proliferation, differentiation and apoptosis. In proliferating cells, the Dm myb gene product, DMyb, promotes both S-phase and M-phase, and acts to preserve diploidy by suppressing endoreduplication. The CBP and p300 proteins are transcriptional co-activators that interact with a multitude of transcription factors, including Myb.

View Article and Find Full Text PDF

Cell division often generates unequally sized daughter cells by off-center cleavages, which are due to either displacement of mitotic spindles or their asymmetry. Drosophila neuroblasts predominantly use the latter mechanism to divide into a large apical neuroblast and a small basal ganglion mother cell (GMC), where the neural fate determinants segregate. Apically localized components regulate both the spindle asymmetry and the localization of the determinants.

View Article and Find Full Text PDF

Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate proto-oncogene c-Myb, and its other family members (A-Myb and B-Myb), all of which encode transcription factors. Dm myb is expressed in all proliferating cells throughout development, and previous studies demonstrate that Dm myb promotes both S-phase and M-phase in proliferating cells, while preserving diploidy by suppressing endoreduplication. We have initiated a characterization of the mechanisms that regulate Dm myb expression, and we report here that the transcriptional activator DREF (the DNA replication-related element binding factor) activates Dm myb transcription via two binding sites located in the 5' flanking region; that the Dm myb promoter lacks a prototypical TATA box sequence and instead appears to use an initiator/downstream promoter element (Inr/DPE) type promoter; and that Dm myb expression is regulated at the translational as well as transcriptional level.

View Article and Find Full Text PDF

Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate family of Myb genes, which encode transcription factors that are involved in regulatory decisions affecting cell proliferation, differentiation and apoptosis. The vertebrate Myb genes have been specifically implicated in regulating the G(1)/S transition of the cell cycle. Dm myb is expressed in all proliferating tissues, but not at detectable levels in endoreduplicating cells.

View Article and Find Full Text PDF

We have previously established that the single myb gene in Drosophila melanogaster, Dm myb, which is related to the proto-oncogene Myb, is required for the G2/M transition of the cell cycle and for suppression of endoreduplication in pupal wing cells. We now report that studies of the abdominal phenotype in loss-of-function Dm myb mutants reveal additional roles for Dm myb in the cell cycle, specifically in mitosis. Abdominal epidermal cells that are mutant for Dm myb proliferate more slowly than wild-type controls throughout pupation, with particularly sluggish progression through the early stages of mitosis.

View Article and Find Full Text PDF