Publications by authors named "Alisa Cario"

Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, posttranslational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored.

View Article and Find Full Text PDF

The etiology of Tauopathies, a diverse class of neurodegenerative diseases associated with the Microtubule Associated Protein (MAP) Tau, is usually described by a common mechanism in which Tau dysfunction results in the loss of axonal microtubule stability. Here, we reexamine and build upon the canonical disease model to encompass other Tau functions. In addition to regulating microtubule dynamics, Tau acts as a modulator of motor proteins, a signaling hub, and a scaffolding protein.

View Article and Find Full Text PDF

In pancreatic islet beta cells, molecular motors use cytoskeletal polymers microtubules as tracks for intracellular transport of insulin secretory granules. Beta-cell microtubule network has a complex architecture and is non-directional, which provide insulin granules at the cell periphery for rapid secretion response, yet to avoid over-secretion and subsequent hypoglycemia. We have previously characterized a peripheral sub-membrane microtubule array, which is critical for withdrawal of excessive insulin granules from the secretion sites.

View Article and Find Full Text PDF

Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, post-translational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored.

View Article and Find Full Text PDF

Regulation of the neuronal microtubule cytoskeleton is achieved through the coordination of microtubule-associated proteins (MAPs). MAP-Tau, the most abundant MAP in the axon, functions to modulate motor motility, participate in signaling cascades, as well as directly mediate microtubule dynamics. Tau misregulation is associated with a class of neurodegenerative diseases, known as tauopathies, including progressive supranuclear palsy, Pick's disease, and Alzheimer's disease.

View Article and Find Full Text PDF

The microtubule-associated protein (MAP) Tau is an intrinsically disordered protein (IDP) primarily expressed in axons, where it functions to regulate microtubule dynamics, modulate motor protein motility, and participate in signaling cascades. Tau misregulation and point mutations are linked to neurodegenerative diseases, including progressive supranuclear palsy (PSP), Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau occur in the C-terminal microtubule-binding domain of the protein.

View Article and Find Full Text PDF