Publications by authors named "Alireza Z Moshfegh"

The ability of a surface to completely absorb a liquid droplet is an important property that can be controlled by geometrical structure and chemical composition of the surface. Here, using Laplace pressure and Gibbs free energy (GFE) considerations, a capped truncated microcone array geometry is proposed to obtain a near zero degree for contact angle (θ) of a water droplet. Our results showed that two essential conditions must be met to achieve a superabsorbent surface.

View Article and Find Full Text PDF

Plasmonic metasurfaces with subwavelength nanoantenna arrays have attracted much attention for their ability to control and manage optical properties. Solar absorbers are potential candidates for effectively converting photons into heat and electricity. This study introduces a novel ultrathin metasurface solar absorber employing elliptical-shaped nanoantenna arrays.

View Article and Find Full Text PDF

Electrospinning is a simple and cheap process for forming one-dimensional (1D) nanofibers with controllable size, morphology, and chemistry. Besides these, the ultrahigh surface area with industrialization capability has attracted extensive interest in the research community. On the other hand, a photocatalytic process is a promising method for degrading organic pollutants that cannot be removed by conventional wastewater treatment.

View Article and Find Full Text PDF

The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a new class of porous crystalline materials being used as photocatalysts for efficient pollutant removal and environmental remediation. In this study, the TMU-32 MOF was synthesized as an effective photocatalyst for the photodegradation of tetracycline (TC) with 96% efficiency in 60 min under visible light. The high photocatalytic activity of the TMU-32 MOF is mainly due to its large specific surface area, which is beneficial for promoting both the adsorption of TC and the separation of the photoinduced charges.

View Article and Find Full Text PDF

Van der Waals (vdW) heterostructures of two-dimensional monolayers are a relatively new class of materials with highly tunable band alignment, bandgap energy, and bandgap transition type. In this study, we performed density functional theory calculations to investigate how a vdW heterostructure of heptazine-based graphitic carbon nitride (hg-CN) and graphitic zinc oxide (g-ZnO) monolayers is formed (hg-CN/g-ZnO). This heterostructure is a potential solar-driven photocatalyst for the water-splitting reaction.

View Article and Find Full Text PDF

The wetting property of spherical particles in a hexagonal close-packed (HCP) ordering from extended Gibbs free energy (GFE) and Laplace pressure view points is studied. A formalism is proposed to predict the contact angle (θ) of a droplet on the HCP films and penetration angle (α) of the liquid on the spherical particles. Then, the extended Laplace pressure for the layered HCP ordering is calculated and a correlation between the wetting angle, sign of pressure, and pressure gradient is achieved.

View Article and Find Full Text PDF

A series of thiophene-based donor-acceptor-donor (D-A-D) oligomer substituted metalloporphyrins (MPors) with different 3d central metal-ions (M = Co, Ni, Cu, and Zn) were systematically investigated to screen efficient hybrid photocatalysts for CO2 reduction based on density functional theory (DFT) and time-dependent DFT simulations. Compared with base MPors, the newly designed hybrid photocatalysts have a lower bandgap energy, stronger and broader absorption spectra, and enhanced intermolecular charge transfer, exciton lifetime, and light-harvesting efficiency. Then, the introduction of D-A-D electron donor (ED) groups into the meso-positions of MPors is a promising method for the construction of efficient photocatalysts.

View Article and Find Full Text PDF

Recent time-resolved transient absorption studies demonstrated that the rate of photoinduced interfacial charge transfer (CT) from Zn-phthalocyanine (ZnPc) to single-layer graphene (SLG) is faster than to double-layer graphene (DLG), in contrast to the expectation from Fermi's golden rule. We present the first time-domain non-adiabatic molecular dynamics (NA-MD) study of the electron injection process from photoexcited ZnPc molecules into SLG and DLG substrates. Our calculations suggest that CT occurs faster in the ZnPc/SLG system than in the ZnPc/DLG system, with 580 fs and 810 fs being the fastest components of the observed CT timescales, respectively.

View Article and Find Full Text PDF

In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM).

View Article and Find Full Text PDF

Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS, MoSe, MoTe, WS and WSe, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride.

View Article and Find Full Text PDF

Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO/Au three-layer memristor devices.

View Article and Find Full Text PDF

Direct solvent exfoliation of bulk MoS2 with the assistance of poly(3-hexylthiophene) (P3HT) produces a novel two-dimensional organic/inorganic semiconductor hetero-junction. The obtained P3HT-MoS2 nanohybrid exhibits unexpected optical limiting properties in contrast to the saturated absorption behavior of both P3HT and MoS2, showing potential in future photoelectric applications.

View Article and Find Full Text PDF

In this research, facile and low cost synthesis methods, electrodeposition at constant current density and anodization at various applied voltages, were used to produce hierarchical cobalt oxide/hydroxide nanoflakes on top of porous anodized cobalt layer. The maximum electrochemical capacitance of 601 mF cm(-2) at scan rate of 2 mV s(-1) was achieved for 30 V optimized anodization applied voltage with high stability. Morphology and surface chemical composition were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis.

View Article and Find Full Text PDF