Publications by authors named "Alireza Shokouhi"

ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.

View Article and Find Full Text PDF

Background: Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising cell-based immunotherapy approach for treating blood disorders and cancers, but genetically engineering CAR-T cells is challenging due to primary T cells' sensitivity to conventional gene delivery approaches. The current viral-based method can typically involve significant operating costs and biosafety hurdles, while bulk electroporation (BEP) can lead to poor cell viability and functionality. Here, a non-viral electroactive nanoinjection (ENI) platform is developed to efficiently negotiate the plasma membrane of primary human T cells via vertically configured electroactive nanotubes, enabling efficient delivery (68.

View Article and Find Full Text PDF

The advancement of nanofabrication technologies has transformed the landscape of engineered nano-bio interfaces, especially with vertically aligned nanoneedles (NNs). This enables scientists to venture into new territories, widening NN applications into increasingly more complex cellular manipulation and interrogation. Specifically, for intracellular delivery application, NNs have been shown to mediate the delivery of various bioactive cargos into a wide range of cells-a physical method termed "nanoinjection".

View Article and Find Full Text PDF

Nanofabrication technologies have been recently applied to the development of engineered nano-bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated.

View Article and Find Full Text PDF

A new class of redox metallopolymer based on cyclometalated iridium(III) centers is described, with unusually intense luminescence properties in aqueous media. We report the facile synthesis, photophysical and electrochemical characterization, supported by DFT calculations and their electrochemiluminescence (ECL) properties which, under some circumstances, are significantly greater than the analogous ruthenium-based materials. The photoluminescence (PL) and ECL of these materials are further dramatically enhanced when dispersed or immobilized as polymeric nanoparticles (PNPs).

View Article and Find Full Text PDF