Publications by authors named "Alireza Pendashteh"

Graphitic carbon nitride with nanorod structure (Nr-GCN) was synthesized using melamine as a precursor without any other reagents by hydrothermal pretreatment method. XRD, FTIR, SEM, N adsorption-desorption from BET, UV-Vis DRS spectroscopy, and photoluminescence were used to characterize the prepared samples. Also, the photoelectrochemical behavior of nanoparticles was studied by photocurrent transient response and cyclic voltammetry analysis.

View Article and Find Full Text PDF

In the present study, a bioelectrochemical reactor (BEC) was utilized to treat two types of real saline produced water (PW). BEC was designed based on the combination of electrocoagulation (EC) process with halophilic microorganisms, and it was assessed in terms of biodegradation of hydrocarbons. The effects of various operating parameters including the current density, electrical contact time (On/Off), hydraulic retention time (HRT), and total dissolved solids (TDS) at different levels on the chemical oxygen demand (COD) removal efficiency, settleability, and performance of isolated halophilic microorganisms were examined.

View Article and Find Full Text PDF

The efficiency of removing chemical oxygen demand (COD) and turbidity from wood wastewater was investigated using a sequencing batch reactor (SBR) and the photo-Fenton process. A total of 94.78% of COD reduction and 99.

View Article and Find Full Text PDF

In this study, we investigated the efficiency of photocatalytic degradation and chemical oxygen demand (COD) reduction from woodchips industry wastewater using α-FeO@TiO@SOH. A magnetic α-FeO@TiO@SOH was prepared as a heterogeneous photo-Fenton catalyst. The Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and elemental mapping (MAP) analyses were performed to determine the structure and morphology of synthesized photocatalysts.

View Article and Find Full Text PDF

A pilot was designed to study the removal efficiencies of total chemical oxygen demand (TCOD) and phosphate by a combined biological and chemical method. Two stages of Up-flow anaerobic sludge blanket (UASB) reactor and advanced oxidation processes was operated in batch mode. The UASB reactor was operated with hydraulic retention time of 26 h.

View Article and Find Full Text PDF

Salinity expressed as total dissolved solids (TDS), is the most challenging parameter in bioremediation of produced water which may inhibit the microbial activities and cause sedimentation problems. The present study explores the feasibility of using walnut shell as an inexpensive and accessible adsorbent-carrier for the immobilization of isolated halophilic microorganisms for treatment of synthetic oilfield produced water. The moving bed biofilm reactor (MBBR) was examined with influent chemical oxygen demand (COD) concentrations from 900 to 3600 mg L, TDS concentrations from 35,000-200,000 mg L, and cycle times from 24 to 72 h.

View Article and Find Full Text PDF

In the present research, the efficiency of turbidity and chemical oxygen demand (COD) reduction from the wood industry wastewater (WIW) by the use of a combined coagulation-flocculation-decantation (CFD) - Fenton process was studied. Firstly, the performance of three coagulants such as ferric chloride (FeCl ), aluminum sulphate (alum), and polyaluminum chloride (PACl) was evaluated. The polyacrylamide (PAM) was used as a flocculant.

View Article and Find Full Text PDF

In this study three modeling approaches consisting Modified Stover-Kincannon, multilayer perceptron neural network (MLPANN) and B-Spline quasi interpolation were applied in order to predict effluent of up-flow anaerobic sludge blanket (UASB) reactor and also to find the reaction kinetics. At first run, the average total chemical oxygen demand (TCOD) removal efficiency was 48.3% with hydraulic retention time (HRT) of 26 h and 63.

View Article and Find Full Text PDF

In this study, a new magnetic α-FeO@MIL-101(Cr)@TiO photocatalyst was successfully synthesized. The material synthesized had been fully characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and Brunauer-Emmett-Teller isotherm methods. The X-ray diffraction analysis corroborates that nanoparticles are polycrystalline with rhombohedral and tetragonal crystal structures for FeO and TiO, respectively.

View Article and Find Full Text PDF

The treatment of pulp and paper mill wastewater by combining an ultrafiltration (UF) membrane and advanced oxidation processes (AOPs) was investigated at a bench scale. In the present study, the effects of impressive parameters on membrane fouling such as CaCl (mg/L), pH, and temperature (°C) were studied using response surface methodology (RSM). According to the results yielded, at the temperature of 45°C, pH of 10 and CaCl concentration of 400 mg/L, the fouling reached its minimum (32%).

View Article and Find Full Text PDF

Oil and gas field wastewater or produced water is a significant waste stream in the oil and gas industries. In this study, the performance of a membrane sequencing batch reactor (MSBR) and membrane sequencing batch reactor/reverse osmosis (MSBR/RO) process treating produced wastewater were investigated and compared. The MSBR was operated in different hydraulic residence time (HRT) of 8, 20 and 44 h.

View Article and Find Full Text PDF

Produced water is the largest waste stream generated in oil and gas industries. It is a mixture of different organic and inorganic compounds. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging produced water on the environment has lately become a significant issue of environmental concern.

View Article and Find Full Text PDF