Waste liquid crystal displays (LCDs) are one of the most substantial and rapidly growing e-waste streams that contain a notable amount of critical, precious, and toxic elements. This study presented a novel thermal-biological hybrid method for resource recovery from waste LCDs. Through the design of a multistage thermal treatment process with the addition of optimized 20 wt% BO to waste, the LCD's glass structure was separated into two interconnected phases, resulting in the transfer of metals from the LCD's glass phase to the BO phase that can solubilize in the acid solution.
View Article and Find Full Text PDFWe present a study on the intersublevel spacings of electrons and holes in a single layer of InAs self-assembled quantum dots. We use Fourier transform infrared transmission spectroscopy via a density chopping scheme for direct experimental observation of the intersublevel spacings of electrons without any external magnetic field. Epitaxial, complementary-doped and semi-transparent electrostatic gates are grown within the ultra high vacuum conditions of molecular beam epitaxy to voltage-tune the device, while a two dimensional electron gas (2DEG) serves as a back contact.
View Article and Find Full Text PDF