Electronic health records (EHR) are sparse, noisy, and private, with variable vital measurements and stay lengths. Deep learning models are the current state of the art in many machine learning domain; however, the EHR data is not a suitable training input for most of them. In this paper, we introduce RIMD, a novel deep learning model that consists of a decay mechanism, modular recurrent networks, and a custom loss function that learns minor classes.
View Article and Find Full Text PDF