Publications by authors named "Alireza Khanaki"

Reliable and controllable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) layers is highly desirable for their applications as 2D dielectric and wide bandgap semiconductors. In this work, we demonstrate that the dissolution of carbon into cobalt (Co) and nickel (Ni) substrates can facilitate the growth of h-BN and attain large-area 2D homogeneity. The morphology of the h-BN film can be controlled from 2D layer-plus-3D islands to homogeneous 2D few-layers by tuning the carbon interstitial concentration in the Co substrate through a carburization process prior to the h-BN growth step.

View Article and Find Full Text PDF

We carried out a systematic study of hexagonal boron nitride/graphene (h-BN/G) heterostructure growth by introducing high incorporation of a carbon (C) source on a heated cobalt (Co) foil substrate followed by boron and nitrogen sources in a molecular beam epitaxy system. With the increase of C incorporation in Co, three distinct regions of h-BN/G heterostructures were observed from region (1) where the C saturation was not attained at the growth temperature (900 °C) and G was grown only by precipitation during the cooling process to form a 'G network' underneath the h-BN film; to region (2) where the Co substrate was just saturated by C atoms at the growth temperature and a part of G growth occurs isothermally to form G islands and another part by precipitation, resulting in a non-uniform h-BN/G film; and to region (3) where a continuous layered G structure was formed at the growth temperature and precipitated C atoms added additional G layers to the system, leading to a uniform h-BN/G film. It is also found that in all three h-BN/G heterostructure growth regions, a 3 h h-BN growth at 900 °C led to h-BN film with a thickness of 1-2 nm, regardless of the underneath G layers' thickness or morphology.

View Article and Find Full Text PDF

One of the low-dimensional Boron Nitride (BN) forms, namely, cubic-BN (c-BN) nanodots (NDs), offers a variety of novel opportunities in battery, biology, deep ultraviolet light emitting diodes, sensors, filters, and other optoelectronic applications. To date, the attempts towards producing c-BN NDs were mainly performed under extreme high-temperature/high-pressure conditions and resulted in c-BN NDs with micrometer sizes, mixture of different BN phases, and containing process-related impurities/contaminants. To enhance device performance for those applications by taking advantage of size effect, pure, sub-100 nm c-BN NDs are necessary.

View Article and Find Full Text PDF

Two-dimensional (2D) hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is promising as a dielectric material for a wide variety of potential applications based on 2D materials. Synthesis of high-quality, large-size and single-crystalline h-BN domains is of vital importance for fundamental research as well as practical applications. In this work, we report the growth of h-BN films on mechanically polished cobalt (Co) foils using plasma-assisted molecular beam epitaxy.

View Article and Find Full Text PDF

Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures.

View Article and Find Full Text PDF