Understanding the mechanism of mechanical reinforcement in glassy polymer nanocomposites is of paramount importance for their tailored design. Here, we present a detailed investigation, via atomistic simulation, of the coupling between density, structure, and conformations of polymer chains with respect to their role in mechanical reinforcement. Probing the properties at the molecular level reveals that the effective mass density as well as the rigidity of the matrix region changes with filler volume fraction, while that of the interphase remains constant.
View Article and Find Full Text PDFThe authors wish to make the following corrections to this paper: [...
View Article and Find Full Text PDFSegmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via atomistic molecular dynamics simulations. The model RGO and GO sheets have different degrees of oxidization. The segmental dynamics is studied through the analysis of backbone torsional motions.
View Article and Find Full Text PDF