Biomechanics-based patient-specific modeling is a promising approach that has proved invaluable for its clinical potential to assess the adversities caused by ischemic heart disease (IHD). In the present study, we propose a framework to find the passive material properties of the myocardium and the unloaded shape of cardiac ventricles simultaneously in patients diagnosed with ischemic cardiomyopathy (ICM). This was achieved by minimizing the difference between the simulated and the target end-diastolic pressure-volume relationships (EDPVRs) using black-box Bayesian optimization, based on the finite element analysis (FEA).
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2023
Background And Objective: It is essential to know the quantitative interactions between biological tissues and external mechanical and chemical stimuli. This assists the physicians to better know the quantitative behavior of the tissue and plan more effective therapy. In the literature, the effect of the chemical and mechanical loading was investigated on the bone biological cell activities and some mechanical features, but a lack of prediction of bone injury under the chemical and mechanical factors was sensed.
View Article and Find Full Text PDFCa2+ is an important mediator in the β-adrenergic-induced cardiac hypertrophy. The β-adrenergic stimulation alters the Ca2+ transient characteristics including its oscillation frequency, diastolic and systolic levels which lead to the CaN activation and subsequent NFAT-dependent hypertrophic genes transcription. Moreover, β-adrenergic-induced alterations in PKA and GSK3β kinase activities in both the cytosol and the nucleus regulate NFAT nuclear translocation and contribute in its hypertrophic response.
View Article and Find Full Text PDFThe chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood.
View Article and Find Full Text PDFConsidering the nonlinear hyperelastic or viscoelastic nature of soft tissues has an important effect on modeling results. In medical applications, accounting nonlinearity begets an ill posed problem, due to absence of external force. Myocardium can be considered as a hyperelastic material, and variational approaches are proposed to estimate stiffness matrix, which take into account the linear and nonlinear properties of myocardium.
View Article and Find Full Text PDF