The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters.
View Article and Find Full Text PDFTrehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation.
View Article and Find Full Text PDFLong-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage.
View Article and Find Full Text PDFCryopreservation has numerous practical applications in medicine, biotechnology, agriculture, forestry, aquaculture and biodiversity conservation, with huge potentials for biological cell and tissue banking. A specific tissue of interest for cryopreservation is the articular cartilage of the human knee joint for two major reasons: (1) clinically, there exists an untapped potential for cryopreserved cartilage to be used in surgical repair/reconstruction/replacement of injured joints because of the limited availability of fresh donor tissue and, (2) scientifically, successful cryopreservation of cartilage, an avascular tissue with only one cell type, is considered a stepping stone for transition from biobanking cell suspensions and small tissue slices to larger and more complicated tissues. For more than 50years, a great deal of effort has been directed toward understanding and overcoming the challenges of cartilage preservation.
View Article and Find Full Text PDFArticular cartilage injuries do not heal and large defects result in osteoarthritis with major personal and socioeconomic costs. Osteochondral transplantation is an effective treatment for large joint defects but its use is limited by the inability to store cartilage for long periods of time. Cryopreservation/vitrification is one method to enable banking of this tissue but decades of research have been unable to successfully preserve the tissue while maintaining cartilage on its bone base - a requirement for transplantation.
View Article and Find Full Text PDFKnowledge of the spatial and temporal distribution of cryoprotective agent (CPA) is necessary for the cryopreservation of articular cartilage. Cartilage dehydration and shrinkage, as well as the change in extracellular osmolality, may have a significant impact on chondrocyte survival during and after CPA loading, freezing, and thawing, and during CPA unloading. In the literature, Fick's law of diffusion is commonly used to predict the spatial distribution and overall concentration of the CPA in the cartilage matrix, and the shrinkage and stress-strain in the cartilage matrix during CPA loading are neglected.
View Article and Find Full Text PDFBiomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions.
View Article and Find Full Text PDFObjective: Osteochondral allografting is an effective method to treat large osteochondral defects but difficulties in tissue preservation have significantly limited the application of this technique. Successful cryopreservation of articular cartilage (AC) could improve the clinical availability of osteochondral tissue and enhance clinical outcomes but cryopreservation of large tissues is hampered by a lack of knowledge of permeation kinetics within these tissues. This study describes the refinement and extension of a recently published technique to measure the permeation kinetics of cryoprotectant agents (CPAs) within porcine AC.
View Article and Find Full Text PDFIntroduction: Decellularized cryopreserved allograft vascular tissue may provide a nonimmunogenic scaffold that is suitable for repopulation by cells from a variety of sources, conferring the potential for growth and repair. Although dimethyl sulfoxide (Me(2)SO) is generally regarded as a safe cryoprotectant, even low levels may alter function of repopulating cells. We investigated the residual concentration of Me(2)SO in the aqueous compartment of cryopreserved ovine aortic valve conduits following decellularization.
View Article and Find Full Text PDFSuccessful cryopreservation of articular cartilage (AC) could improve clinical results of osteochondral allografting and provide a useful treatment alternative for large cartilage defects. However, successful cartilage cryopreservation is limited by the time required for cryoprotective agent (CPA) permeation into the matrix and high CPA toxicity. This study describes a novel, practical method to examine the time-dependent permeation of CPAs [dimethyl sulfoxide (DMSO) and propylene glycol (PG)] into intact porcine AC.
View Article and Find Full Text PDF