Publications by authors named "Alinne C Costa"

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment.

View Article and Find Full Text PDF

Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor.

View Article and Find Full Text PDF

Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6.

View Article and Find Full Text PDF

Cancer cells are embedded within the tumor microenvironment and interact dynamically with its components during tumor progression. Understanding the molecular mechanisms by which the tumor microenvironment components communicate is crucial for the success of therapeutic applications. Recent studies show, by using state-of-the-art technologies, including sophisticated in vivo inducible Cre/loxP mediated systems and CRISPR-Cas9 gene editing, that pericytes communicate with cancer cells.

View Article and Find Full Text PDF

Hematopoietic stem cells are the most illustrious inhabitants of the bone marrow. Direct visualization of endogenous hematopoietic stem cells in this niche is essential to study their functions. Until recently this was not possible in live animals.

View Article and Find Full Text PDF

Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning.

View Article and Find Full Text PDF

Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer.

View Article and Find Full Text PDF

Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy.

View Article and Find Full Text PDF

The tumour mass is composed not only of heterogeneous neoplastic cells, but also a variety of other components that may affect cancer cells behaviour. The lack of detailed knowledge about all the constituents of the tumour microenvironment restricts the design of effective treatments. Nerves have been reported to contribute to the growth and maintenance of numerous tissues.

View Article and Find Full Text PDF

Spinal cord injury results in locomotor impairment attributable to the formation of an inhibitory fibrous scar, which prevents axonal regeneration after trauma. The scarcity of knowledge about the molecular and cellular mechanisms involved in scar formation after spinal cord lesion impede the design of effective therapies. Recent studies, by using state-of-the-art technologies, including genetic tracking and blockage of pericytes in combination with optogenetics, reveal that pericyte blockage facilitates axonal regeneration and neuronal integration into the local neural circuitry.

View Article and Find Full Text PDF

In mammals, new neurons can be generated from neural stem cells in specific regions of the adult brain. Neural stem cells are characterized by their abilities to differentiate into all neural lineages and to self-renew. The specific microenvironments regulating neural stem cells, commonly referred to as neurogenic niches, comprise multiple cell populations whose precise contributions are under active current exploration.

View Article and Find Full Text PDF