When using the reverse-transcription quantitative polymerase chain reaction (RT-qPCR) technique for quantitative assessment of microRNA (miRNA) expression, normalizing data using a stable endogenous gene is essential; however, no universally adequate reference gene exists. Therefore, in this study, we aimed to determine, via the RNA-Seq technique, the most adequate endogenous normalizer for the expression assessment of plasma miRNAs in patients with coronavirus disease 2019 (COVID-19). Two massive sequencing procedures were performed (a) to identify differentially expressed miRNAs between patients with COVID-19 and healthy volunteers (n = 12), and (b) to identify differentially expressed miRNAs between patients with severe COVID-19 and those with mild COVID-19 (n = 8).
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recent research has demonstrated how epigenetic mechanisms regulate the host-virus interactions in COVID-19. It has also shown that microRNAs (miRNAs) are one of the three fundamental mechanisms of the epigenetic regulation of gene expression and play an important role in viral infections.
View Article and Find Full Text PDFGene
May 2024
This systematic review and meta-analysis aimed to verify the association between single-nucleotide polymorphisms (SNPs) in vitamin D-related genes and the severity or mortality of coronavirus disease 19 (COVID-19). We systematically searched PubMed, BVS/Bireme, Scopus, Embase, and Web of Science for relevant studies published until November 24, 2023. Twelve studies were included.
View Article and Find Full Text PDFMol Biol Rep
July 2022
Background: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19.
View Article and Find Full Text PDFIn corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine.
View Article and Find Full Text PDF