On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed.
View Article and Find Full Text PDF7-Ketocholesterol and 7β-hydroxycholesterol are most often derived from the autoxidation of cholesterol. Their quantities are often increased in the body fluids and/or diseased organs of patients with age-related diseases such as cardiovascular diseases, Alzheimer's disease, age-related macular degeneration, and sarcopenia which are frequently associated with a rupture of RedOx homeostasis leading to a high oxidative stress contributing to cell and tissue damages. On murine cells from the central nervous system (158N oligodendrocytes, microglial BV-2 cells, and neuronal N2a cells) as well as on C2C12 murine myoblasts, these two oxysterols can induce a mode of cell death which is associated with qualitative, quantitative, and functional modifications of the peroxisome.
View Article and Find Full Text PDFNitroglycerin (NTG) is a prodrug that has long been used in clinical practice for the treatment of angina pectoris. The biotransformation of NTG and subsequent release of nitric oxide (NO) is responsible for its vasodilatating property. Because of the remarkable ambivalence of NO in cancer disease, either protumorigenic or antitumorigenic (partly dependent on low or high concentrations), harnessing the therapeutic potential of NTG has gain interest to improve standard therapies in oncology.
View Article and Find Full Text PDFIt is known that the activities of Na/K- and Ca-ATPases in the plasma membrane with an excess of cholesterol are compromised. Our main goal was to find out whether quercetin, resveratrol, or caffeic acid, in the nano- and low micromolar concentration ranges, can improve the ATPase activity in human erythrocyte membranes with excess cholesterol. These molecules belong to different chemical classes of polyphenols and are widely present in plant foods.
View Article and Find Full Text PDF7-ketocholesterol and 7β-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome.
View Article and Find Full Text PDFPeroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7β-hydroxycholesterol (7β-OHC; 50 μM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts.
View Article and Find Full Text PDFAging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7β-hydroxycholesterol (7β-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7β-OHC is therefore an important issue.
View Article and Find Full Text PDFThe Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome.
View Article and Find Full Text PDFPeroxisomopathies are qualitative or quantitative deficiencies in peroxisomes which lead to increases in the level of very-long-chain fatty acids (VLCFA) and can be associated with more or less pronounced dysfunction of central nervous system cells: glial and microglial cells. Currently, in frequent neurodegenerative diseases, Alzheimer's disease (AD) and multiple sclerosis (MS), peroxisomal dysfunction is also suspected due to an increase in VLCFA, which can be associated with a decrease of plasmalogens, in these patients. Moreover, in patients suffering from peroxisomopathies, such as X-linked adrenoleukodystrophy (X-ALD), AD, or MS, the increase in oxidative stress observed leads to the formation of cytotoxic oxysterols: 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7β-OHC).
View Article and Find Full Text PDFThe Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µM; 48 h) induces cytotoxic effects characterized by an induction of cell death.
View Article and Find Full Text PDFOxysterols are oxidized forms of cholesterol generated from cholesterol by auto-oxidation, enzymatic processes, or both. Some of them (7-ketocholesterol, 7β-hydroxycholesterol and 24(S)-hydroxycholesterol), when used at cytotoxic concentrations on different cell types from different species (mesenchymal bone marrow cells, monocytic cells and nerve cells), induce a type of cell death associated with OXIdative stress and several characteristics of APOPTOsis and autoPHAGY, defined as oxiapoptophagy. Oxidative stress is associated with overproduction of ROS, increased antioxidant enzyme activities, lipid peroxidation and protein carbonylation.
View Article and Find Full Text PDFThe brain, which is a cholesterol-rich organ, can be subject to oxidative stress in a variety of pathophysiological conditions, age-related diseases and some rare pathologies. This can lead to the formation of 7-ketocholesterol (7KC), a toxic derivative of cholesterol mainly produced by auto-oxidation. So, preventing the neuronal toxicity of 7KC is an important issue to avoid brain damage.
View Article and Find Full Text PDFOxysterols are molecules derived by the oxidation of cholesterol and can be formed either by auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-oxidation, 7-ketocholesterol and 7β-hydroxycholesterol are the main forms generated. These oxysterols, formed endogenously and brought in large quantities by certain foods, have major cytotoxic properties.
View Article and Find Full Text PDFBackground: The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined.
Objective: To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO).
In the prevention of neurodegeneration associated with aging and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), neuronal differentiation is of interest. In this context, neurotrophic factors are a family of peptides capable of promoting the growth, survival, and/or differentiation of both developing and immature neurons. In contrast to these peptidyl compounds, polyphenols are not degraded in the intestinal tract and are able to cross the blood⁻brain barrier.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
February 2020
Cholesterol oxidation products, also named oxysterols, can be formed either by cholesterol auto-oxidation, enzymatically or both. Among these oxysterols, 7-ketocholesterol (7KC) is mainly formed during radical attacks that take place on the carbon 7 of cholesterol. As increased levels of 7KC have been found in the tissues, plasma and/or cerebrospinal fluid of patients with major diseases, especially age-related diseases (cardiovascular diseases, eye diseases, neurodegenerative diseases), some cancers, and chronic inflammatory diseases, it is suspected that 7KC, could contribute to their development.
View Article and Find Full Text PDF