Organoids generated from human pluripotent stem cells provide experimental systems to study development and disease, but quantitative measurements across different spatial scales and molecular modalities are lacking. In this study, we generated multiplexed protein maps over a retinal organoid time course and primary adult human retinal tissue. We developed a toolkit to visualize progenitor and neuron location, the spatial arrangements of extracellular and subcellular components and global patterning in each organoid and primary tissue.
View Article and Find Full Text PDFSelf-organization is a process by which interacting cells organize and arrange themselves in higher order structures and patterns. To achieve this, cells must have molecular mechanisms to sense their complex local environment and interpret it to respond accordingly. A combination of cell-intrinsic and cell-extrinsic cues are decoded by the single cells dictating their behaviour, their differentiation and symmetry-breaking potential driving development, tissue remodeling and regenerative processes.
View Article and Find Full Text PDFWe present a model-based method, designated Inverse Metabolic Control Analysis (IMCA), which can be used in conjunction with classical Metabolic Control Analysis for the analysis and design of cellular metabolism. We demonstrate the capabilities of the method by first developing a comprehensively curated kinetic model of sphingolipid biosynthesis in the yeast Saccharomyces cerevisiae. Next we apply IMCA using the model and integrating lipidomics data.
View Article and Find Full Text PDFCells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae.
View Article and Find Full Text PDFAutophagy is a highly regulated pathway that selectively degrades cellular constituents such as protein aggregates and excessive or damaged organelles. This transport route is characterized by engulfment of the targeted cargo by autophagosomes. The formation of these double-membrane vesicles requires the covalent conjugation of the ubiquitin-like protein Atg8 to phosphatidylethanolamine (PE).
View Article and Find Full Text PDFThe regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry-based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae.
View Article and Find Full Text PDF