Publications by authors named "Aline V Bacurau"

Satellite cells (SC) are associated with skeletal muscle remodelling after muscle damage and/or extensive hypertrophy resulting from resistance training (RT). We recently reported that early increases in muscle protein synthesis (MPS) during RT appear to be directed toward muscle damage repair, but MPS contributes to hypertrophy with progressive muscle damage attenuation. However, modulations in acute-chronic SC content with RT during the initial (1st-wk: high damage), early (3rd-wk: attenuated damage), and later (10th-wk: no damage) stages is not well characterized.

View Article and Find Full Text PDF

We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined the effects of strength training (ST) before muscle injury (cryolesion) on muscle healing and response to low-level laser therapy (LLLT) in Wistar rats.
  • Results showed that prior ST improved muscle recovery 14 days after injury and enhanced the effectiveness of LLLT, leading to better healing outcomes.
  • Both ST and LLLT individually reduced inflammation markers and increased muscle-related gene expression, with combined treatments further boosting these effects.
View Article and Find Full Text PDF

Heart failure (HF) is characterized by decreased exercise capacity, attributable to neurocirculatory and skeletal muscle factors. Cardiac resynchronization therapy (CRT) and exercise training have each been shown to decrease muscle sympathetic nerve activity (MSNA) and increase exercise capacity in patients with HF. We hypothesized that exercise training in the setting of CRT would further reduce MSNA and vasoconstriction and would increase Ca-handling gene expression in skeletal muscle in patients with chronic systolic HF.

View Article and Find Full Text PDF

Key Points: Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3.

View Article and Find Full Text PDF

Background: Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice.

Methods: Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET.

View Article and Find Full Text PDF

Objective: To examine whether combined testosterone replacement and exercise training (ET) therapies would potentiate the beneficial effects of isolated therapies on neurovascular control and muscle wasting in patients with heart failure (HF) with testosterone deficiency.

Patients And Methods: From January 10, 2010, through July 25, 2013, 39 male patients with HF, New York Heart Association functional class III, total testosterone level less than 249 ng/dL (to convert to nmol/L, multiply by .03467), and free testosterone level less than 131 pmol/L were randomized to training (4-month cycloergometer training), testosterone (intramuscular injection of testosterone undecylate for 4 months), and training + testosterone groups.

View Article and Find Full Text PDF

Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS.

View Article and Find Full Text PDF

Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass.

View Article and Find Full Text PDF

Nephrotoxicity is substantial side effect for 30% of patients undergoing cancer therapy with cisplatin and may force them to change or even abandon the treatment. Studies regarding aerobic exercise have shown its efficacy for the treatment of many types of diseases and its capacity to reduce tumors. However, little is known about the impact of physical exercise on cisplatin-induced acute kidney injury (AKI).

View Article and Find Full Text PDF

Glucose and glutamine are important energetic and biosynthetic nutrients for T and B lymphocytes. These cells consume both nutrients at high rates in a function-dependent manner. In other words, the pathways that control lymphocyte function and survival directly control the glucose and glutamine metabolic pathways.

View Article and Find Full Text PDF

Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups: CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period.

View Article and Find Full Text PDF

Skeletal myopathy is a hallmark of heart failure (HF) and has been associated with a poor prognosis. HF and other chronic degenerative diseases share a common feature of a stressed system: sympathetic hyperactivity. Although beneficial acutely, chronic sympathetic hyperactivity is one of the main triggers of skeletal myopathy in HF.

View Article and Find Full Text PDF

Background: Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass.

View Article and Find Full Text PDF

Although aging compromises the functionality of macrophages (MΦ) and lymphocytes (LY), and dietary restriction (DR) and exercise partially counterbalance immunosenescence, it is unknown what effects of both strategies have on the functionality of these immune cells. Rats were randomly distributed into adult control (AD), older group (OLD), older submitted to 50% of DR (DR) and older submitted to swimming (EX) (n = 10 in each group). The function of immune cells (proliferative index, phagocytic capacity and H₂O₂ production), the weight and protein content of lymphoid organs (thymus and spleen), plasma glutamine concentration, interleukins (IL-1, IL-2, IL-6) and, immunoglobulins (IgA and IgG) were analysed.

View Article and Find Full Text PDF

Exercise modulates both glucose and glutamine metabolism which influences lymphocyte function. We investigated the influence of chronic moderate exercise on glucose and glutamine metabolism in lymphocytes, the associated influence on proliferation, and cytokine and immunoglobulin production. Male Wistar rats (8 weeks old) were placed in an exercise training group (N = 15, 1 h day(-1) at 60 % VO₂max, 5 days week(-1)) for 8 weeks of exercise, or a sedentary control group.

View Article and Find Full Text PDF

Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model.

View Article and Find Full Text PDF

Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET.

View Article and Find Full Text PDF

In lymphocytes (LY), the well-documented antiproliferative effects of IFN-α are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-α, and the changes on glucose and glutamine metabolisms were investigated.

View Article and Find Full Text PDF

Active lymphocytes (LY) and macrophages (MPhi) are involved in the pathophysiology of rheumatoid arthritis (RA). Due to its anti-inflammatory effect, physical exercise may be beneficial in RA by acting on the immune system (IS). Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks, 5 days/week, 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and MPhi, were evaluated.

View Article and Find Full Text PDF

Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw).

View Article and Find Full Text PDF

Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo.

View Article and Find Full Text PDF

Epidemiologic studies suggest that moderately intense training promotes augmented immune function, whereas strenuous exercise can cause immunosupression. Because the combat of cancer requires high immune function, high-intensity exercise could negatively affect the host organism; however, despite the epidemiologic data, there is a lack of experimental evidence to show that high-intensity training is harmful to the immune system. Therefore, we tested the influence of high-intensity treadmill training (10 weeks, 5 days/week, 30 mins/day, 85% VO(2)max) on immune system function and tumor development in Walker 256 tumor-bearing Wistar rats.

View Article and Find Full Text PDF

Heart failure (HF) is a common endpoint for many forms of cardiovascular disease and a significant cause of morbidity and mortality. The development of end-stage HF often involves an initial insult to the myocardium that reduces cardiac output and leads to a compensatory increase in sympathetic nervous system activity. Acutely, the sympathetic hyperactivity through the activation of beta-adrenergic receptors increases heart rate and cardiac contractility, which compensate for decreased cardiac output.

View Article and Find Full Text PDF