Immunocytochemistry (ICC), or immunofluorescence microscopy, is an essential biological technique for phenotyping cells in both research and diagnostic applications. Standard ICC methods often do not work well when the cell sample contains a small number of cells (<10 000) because of the significant cell loss that occurs during washing, staining, and centrifugation steps. Cell loss is particularly relevant when working with rare cells, such as circulating tumor cells, where such losses could significantly bias experimental outcomes.
View Article and Find Full Text PDFA fundamental challenge in the transfusion of red blood cells (RBCs) is that a subset of donated RBC units may not provide optimal benefit to transfusion recipients. This variability stems from the inherent ability of donor RBCs to withstand the physical and chemical insults of cold storage, which ultimately dictate their survival in circulation. The loss of RBC deformability during cold storage is well-established and has been identified as a potential biomarker for the quality of donated RBCs.
View Article and Find Full Text PDFThe loss of red blood cell (RBC) deformability is part of the pathology of many diseases. In malaria caused by Plasmodium falciparum infection, metabolism of hemoglobin by the parasite results in progressive reduction in RBC deformability that is directly correlated with the growth and development of the parasite. The ability to sort RBCs based on deformability therefore provides a means to isolate pathological cells and to study biochemical events associated with disease progression.
View Article and Find Full Text PDFBackground: Malaria remains a challenging and fatal infectious disease in developing nations and the urgency for the development of new drugs is even greater due to the rapid spread of anti-malarial drug resistance. While numerous parasite genetic, protein and metabolite biomarkers have been proposed for testing emerging anti-malarial compounds, they do not universally correspond with drug efficacy. The biophysical character of parasitized cells is a compelling alternative to these conventional biomarkers because parasitized erythrocytes become specifically rigidified and this effect is potentiated by anti-malarial compounds, such as chloroquine and artesunate.
View Article and Find Full Text PDFChanges in red blood cell (RBC) deformability are associated with the pathology of many diseases and could potentially be used to evaluate disease status and treatment efficacy. We developed a simple, sensitive, and multiplexed RBC deformability assay based on the spatial dispersion of single cells in structured microchannels. This mechanism is analogous to gel electrophoresis, but instead of transporting molecules through nano-structured material to measure their length, RBCs are transported through micro-structured material to measure their deformability.
View Article and Find Full Text PDFThe extraordinary deformability of red blood cells gives them the ability to repeatedly transit through the microvasculature of the human body. The loss of this capability is part of the pathology of a wide range of diseases including malaria, hemoglobinopathies, and micronutrient deficiencies. We report on a technique for multiplexed measurements of the pressure required to deform individual red blood cell through micrometer-scale constrictions.
View Article and Find Full Text PDFA common indicator of rheological dysfunction is a measurable decrease in the deformability of red blood cells (RBCs). Decreased RBC deformability is associated with cellular stress or pathology and can impede the transit of these cells through the microvasculature, where RBCs play a central role in the oxygenation of tissues. Therefore, RBC deformability has been recognized as a sensitive biomarker for rheological disease.
View Article and Find Full Text PDF