In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments.
View Article and Find Full Text PDFPrion diseases are characterized by prion protein (PrP) transmissible aggregation and neurodegeneration, which has been linked to oxidative stress. The physiological function of PrP seems related to sequestering of redox-active Cu, and Cu dyshomeostasis is observed in prion disease brain. It is unclear whether Cu contributes to PrP aggregation, recently shown to be mediated by PrP condensation.
View Article and Find Full Text PDFUnderstanding catalysts strain dynamic behaviours is crucial for the development of cost-effective, efficient, stable and long-lasting catalysts. Here, we reveal in situ three-dimensional strain evolution of single gold nanocrystals during a catalytic CO oxidation reaction under operando conditions with coherent X-ray diffractive imaging. We report direct observation of anisotropic strain dynamics at the nanoscale, where identically crystallographically-oriented facets are qualitatively differently affected by strain leading to preferential active sites formation.
View Article and Find Full Text PDFThe understanding of phase transformation upon activation, reaction and deactivation of catalysts is of prime importance for tailoring catalysts with better performances. Herein we combined Quick-EXAFS and Raman spectroscopies in operando conditions through the monitoring of reaction products by mass spectrometry in order to study in depth active species and deactivating ones for Ethanol Steam Reforming reaction. Quick-EXAFS data analyzed by multivariate analysis allows one to determine the nickel and copper species involved during the activation of a Ni-Cu hydrotalcite-like precursors.
View Article and Find Full Text PDFThe chemical properties of materials are dependent on dynamic changes in their three-dimensional (3D) structure as well as on the reactive environment. We report an 3D imaging study of defect dynamics of a single gold nanocrystal. Our findings offer an insight into its dynamic nanostructure and unravel the formation of a nanotwin network under CO oxidation conditions.
View Article and Find Full Text PDF