The poor prognosis of colorectal cancer (CRC) is mainly associated with the highly invasive nature, delayed diagnosis, multidrug-resistant cells, tumor recurrence, and metastasis. Targeted therapies offer a promising means to enhance drug accumulation at the tumor site with the aid of cell-targeting ligands. Herein, chitosan-based multifunctional nanoparticles, conjugated with methotrexate (MTX) by covalent bonds, were designed for targeted delivery of 5-fluorouracil (5-FU) to improve CRC therapy.
View Article and Find Full Text PDFThis work aims to standardize the three-dimensional hydroxyethyl-alginate-gelatin (HAG) scaffold as a model to evaluate biofilm and antifungal treatments. The scaffold was characterized by physical, rheological and microscopic analyses; the antibiofilm action was evaluated by determination of cfu and metabolic activity. The scaffold was non-toxic showing stability in aqueous media, swelling capacity, elasticity and had homogeneously distributed pores averaging 190 μm.
View Article and Find Full Text PDFBevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.
View Article and Find Full Text PDFIntroduction: Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease.
Areas Covered: This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration.
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion.
View Article and Find Full Text PDFInt J Biol Macromol
June 2023
Nanoparticles and nanoparticle-loaded films based on chitosan/sodium alginate with curcumin (CUR) are promising strategies to improve the efficacy of antimicrobial photodynamic therapy (aPDT) for the treatment of oral biofilms. This work aimed to develop and evaluate the nanoparticles based on chitosan and sodium alginate encapsulated with CUR dispersed in polymeric films associated with aPDT in oral biofilms. The NPs were obtained by polyelectrolytic complexation, and the films were prepared by solvent evaporation.
View Article and Find Full Text PDFInt J Pharm
April 2023
The present work aimed to evaluate different Liquid Crystal Mesophases (LCM) as transdermal drug delivery systems (TDDS) for nifedipine (NFD), a lipophilic drug model. The formulations composed of water, Citrus sinensis essential oil (CSEO), PPG-5-CETETH-20, and Olive oil ester PEG-7 were obtained and characterized by polarized light microscopy (PLM), rheology, small-angle x-ray scattering (SAXS), Fourier transform infrared coupled with an attenuated total reflection accessory (FTIR-ATR) and in vitro assays: bioadhesion, drug release, skin permeation, and retention tests. As a result, changes in component proportions led to several transparent viscous systems with an anisotropic profile.
View Article and Find Full Text PDF5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast, and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP).
View Article and Find Full Text PDFCarbohydr Polym
November 2021
Polyelectrolyte complexation is a technique based on interactions between polyelectrolytes of opposite charges driven by supramolecular interactions. Although many studies address the formation of polyelectrolyte complexes (PECs), few explore strategies and tools to select the best working conditions and are often based on empirical choices. This study evaluates the influence of pH, molecular weight, and polymeric proportion on the formation of PECs based on chitosan:dextran sulfate.
View Article and Find Full Text PDFJ Control Release
June 2021
Colon-targeted oral delivery of drugs remains as an appealing and promising approach for the treatment of prevalent intestinal diseases (ID), such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Notwithstanding, there are numerous challenges to effective drug delivery to the colon, which requires the design of advanced strategies. Micro- and nanoparticles have received great attention as colon-targeted delivery platforms due to their reduced size and structural composition that favors the accumulation and/or residence time of drugs at the site of action and/or absorption, contributing to localized therapy.
View Article and Find Full Text PDFEur J Pharm Sci
August 2021
This work proposes new methotrexate (MTX) loaded drug delivery systems (DDS) to treat rheumatoid arthritis via the intra-articular route: a poloxamer based thermosensitive hydrogel (MTX-HG), oligochitosan and hypromellose phthalate-based polyelectrolyte complexes (MTX-PEC) and their association (MTX-PEC-HG). MTX-PEC showed 470 ± 166 nm particle size, 0.298 ± 0.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2021
The encapsulation of nanoparticles within microparticles designed for specific delivery to the colon is a relevant strategy to avoid premature degradation or release of nanoparticles during their passage through the stomach and upper gastrointestinal tract (GIT), allowing the targeted delivery of chemotherapeutics to the colon after oral administration. Here, we designed an oral multiparticulate system to achieve targeted release in the colon. In this sense, chitosan nanoparticles (CS NPs) encapsulated with 5-fluorouracil (5-FU) and incorporated into retrograded starch and pectin (RS/P) microparticles were developed and their in vivo distribution along the mouse GIT after oral administration was monitored using multispectral optical imaging.
View Article and Find Full Text PDFVaginal infections represent a clear women health problem due to the several issues as high recurrence rate, drug resistence and emergence of persistent strains. However, achieving improvements in therapeutic efficacy by using conventional formulations intended to vaginal drug delivery remains as a challenge due to anatomy and physiology of the vagina, since the secretion and renewal of vaginal fluids contribute to the removal of the dosage form. Hydrogels have been widely exploited aiming to achieve drug delivery directly into vaginal mucosa for local therapy due to their attractive features as increased residence time of the drug at the action site and control of drug release rates.
View Article and Find Full Text PDFThe development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems.
View Article and Find Full Text PDFCarbohydr Polym
January 2018
Bacterial cellulose/carboxymethylcelullose (BC/CMC) biocomposites with different DS-CMC (DS from 0.7 to 1.2) were developed in order to evaluate their impact as a drug delivery system.
View Article and Find Full Text PDFInt J Nanomedicine
February 2018
Resveratrol (Res) is a common phytoalexin present in a few edible materials, such as grape skin, peanuts, and red wine. Evidence has shown the beneficial effects of Res on human health, which may be attributed to its anti-inflammatory activity. However, the poor aqueous solubility of Res limits its therapeutic effectiveness.
View Article and Find Full Text PDFDevelopment of nanosuspensions offers a promising tool for formulations involving poorly water-soluble drugs. In this study, methotrexate (MTX) nanosuspensions were prepared using a bottom-up process based on acid-base neutralization reactions. Computational studies were performed to determine structural and electronic properties for isolated molecules and molecular clusters in order to evaluate the mechanism of MTX nanoparticle formation.
View Article and Find Full Text PDFFrom previous studies, it has been found that curcumin exhibits an anti-inflammatory activity and is being used for the treatment of skin disorders; however, it is hydrophobic and has weak penetrating ability, resulting in poor drug transport through the stratum corneum. The aim of this study was to develop liquid crystalline systems for topical administration of curcumin for the treatment of inflammation. These liquid crystalline systems were developed from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the surfactant, oil phase, and aqueous phase, respectively.
View Article and Find Full Text PDF