Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFThe intestinal epithelium is the first line of defense against enteric pathogens. Removal of infected cells by exfoliation prevents mucosal translocation and systemic infection in the adult host, but is less commonly observed in the neonatal intestine. Instead, here, we describe non-professional efferocytosis of Salmonella-infected enterocytes by neighboring epithelial cells in the neonatal intestine.
View Article and Find Full Text PDFHypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we inferred significant activation of HIF-1 after oral infection of mice with Salmonella enterica serovar Typhimurium.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are in the focus of scientific research since the 1990s. In most cases, the main aim was laid on the design of AMP to kill bacteria effectively, with particular emphasis on broadband action and independency on antibiotic resistance. However, so far no approved drug on the basis of AMP has entered the market.
View Article and Find Full Text PDFIn Fig. 1d of this Letter, the third group along should have been labelled 'WT' rather than 'Tlr5'. This has been corrected online.
View Article and Find Full Text PDFAlterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases, and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions. The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis. However, the underlying molecular mechanisms of this neonatal priming period have not been defined.
View Article and Find Full Text PDFEffector molecules translocated by the Salmonella pathogenicity island (SPI)1-encoded type 3 secretion system (T3SS) critically contribute to the pathogenesis of human Salmonella infection. They facilitate internalization by non-phagocytic enterocytes rendering the intestinal epithelium an entry site for infection. Their function in vivo has remained ill-defined due to the lack of a suitable animal model that allows visualization of intraepithelial Salmonella.
View Article and Find Full Text PDFEnteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice.
View Article and Find Full Text PDFA single layer of epithelial cells separates the intestinal lumen from the underlying sterile tissue. It is exposed to a multitude of nutrients and a large number of commensal bacteria. Although the presence of commensal bacteria significantly contributes to nutrient digestion, vitamin synthesis and tissue maturation, their high number represents a permanent challenge to the integrity of the epithelial surface keeping the local immune system constantly on alert.
View Article and Find Full Text PDFObjectives: Dysbiosis of the intestinal microbiota is associated with Crohn's disease (CD). Functional evidence for a causal role of bacteria in the development of chronic small intestinal inflammation is lacking. Similar to human pathology, TNF(deltaARE) mice develop a tumour necrosis factor (TNF)-driven CD-like transmural inflammation with predominant ileal involvement.
View Article and Find Full Text PDFAccording to the NHS, it is estimated that over 50% of the adult population are, to some extent, affected by gum disease and approximately 15% of UK population have been diagnosed with severe periodontitis. Periodontitis, a chronic polymicrobial disease of the gums, causes inflammation in its milder form, whereas in its severe form affects the surrounding tissues and can result in tooth loss. During periodontitis, plaque accumulates and sits between the junctional epithelium and the tooth itself, resulting in inflammation and the formation of a periodontal pocket.
View Article and Find Full Text PDFThe intestinal mucosa squares the circle by allowing efficient nutrient absorption while generating a firm barrier toward the enteric microbiota, enteropathogenic microorganisms and high luminal concentrations of potent immunostimulatory molecules. The mucus layer together with local antimicrobial and anti-inflammatory peptides significantly contribute to this ability. Here we summarize the recent progress made to better understand the critical importance of this dynamic, complex and highly structured anti-inflammatory and antimicrobial barrier.
View Article and Find Full Text PDFThe coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration.
View Article and Find Full Text PDFObjective: Antimicrobial peptides (AMP) provide protection from infection by pathogenic microorganisms and restrict bacterial growth at epithelial surfaces to maintain mucosal homeostasis. In addition, they exert a significant anti-inflammatory activity. Here we analysed the anatomical distribution and biological activity of an orally administered AMP in the context of bacterial infection and host-microbial homeostasis.
View Article and Find Full Text PDFStreptococcus pneumoniae and Listeria monocytogenes, pathogens which can cause severe infectious disease in human, were used to infect properdin-deficient and wildtype mice. The aim was to deduce a role for properdin, positive regulator of the alternative pathway of complement activation, by comparing and contrasting the immune response of the two genotypes in vivo. We show that properdin-deficient and wildtype mice mounted antipneumococcal serotype-specific IgM antibodies, which were protective.
View Article and Find Full Text PDFBacterial infections are known to cause severe health-threatening conditions, including sepsis. All attempts to get this disease under control failed in the past, and especially in times of increasing antibiotic resistance, this leads to one of the most urgent medical challenges of our times. We designed a peptide to bind with high affinity to endotoxins, one of the most potent pathogenicity factors involved in triggering sepsis.
View Article and Find Full Text PDFIntestinal ischemia/reperfusion (I/R) injury causes inflammation and tissue damage and is associated with high morbidity and mortality. Uncontrolled activation of the innate immune system through toll-like receptors (Tlr) plays a key role in I/R-mediated tissue damage but the underlying mechanisms have not been fully resolved. Here, we identify post-transcriptional upregulation of the essential Tlr signalling molecule interleukin 1 receptor-associated kinase (Irak) 1 as the causative mechanism for post-ischemic immune hyper-responsiveness of intestinal epithelial cells.
View Article and Find Full Text PDFThe bacterial cell wall represents the primary target for antimicrobial agents. Microbial destruction is accompanied by the release of potent immunostimulatory membrane constituents. Both Gram-positive and Gram-negative bacteria release a variety of lipoproteins and peptidoglycan fragments.
View Article and Find Full Text PDFThe first barrier that an antimicrobial agent must overcome when interacting with its target is the microbial cell wall. In the case of Gram-negative bacteria, additional to the cytoplasmic membrane and the peptidoglycan layer, an outer membrane (OM) is the outermost barrier. The OM has an asymmetric distribution of the lipids with phospholipids and lipopolysaccharide (LPS) located in the inner and outer leaflets, respectively.
View Article and Find Full Text PDFProperdin is a positive regulator of complement activation so far known to be instrumental in the survival of infections with certain serotypes of Neisseria meningitidis. We have generated a fully backcrossed properdin-deficient mouse line by conventional gene-specific targeting. In vitro, properdin-deficient serum is impaired in alternative pathway-dependent generation of complement fragment C3b when activated by Escherichia coli DH5alpha.
View Article and Find Full Text PDF