Publications by authors named "Aline Buri"

Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, using amplicon sequencing of environmental DNA in open habitat soil from 161 locations spanning 2600 m of elevation in the Swiss Alps (from 400 to 3000 m), we found that, over the whole study area, soils are dominated by consumers, followed by parasites and phototrophs.

View Article and Find Full Text PDF

Soil bacteria are largely missing from future biodiversity assessments hindering comprehensive forecasts of ecosystem changes. Soil bacterial communities are expected to be more strongly driven by pH and less by other edaphic and climatic factors. Thus, alkalinisation or acidification along with climate change may influence soil bacteria, with subsequent influences for example on nutrient cycling and vegetation.

View Article and Find Full Text PDF

Assessing the degree to which climate explains the spatial distributions of different taxonomic and functional groups is essential for anticipating the effects of climate change on ecosystems. Most effort so far has focused on above-ground organisms, which offer only a partial view on the response of biodiversity to environmental gradients. Here including both above- and below-ground organisms, we quantified the degree of topoclimatic control on the occurrence patterns of >1,500 taxa and phylotypes along a c.

View Article and Find Full Text PDF

Archaeorhizomycetes, a widespread fungal class with a dominant presence in many soil environments, contains cryptic filamentous species forming plant-root associations whose role in terrestrial ecosystems remains unclear. Here, we apply a correlative approach to identify the abiotic and biotic environmental variables shaping the distribution of this fungal group. We used a DNA sequencing dataset containing Archaeorhizomycetes sequences and environmental variables from 103 sites, obtained through a random-stratified sampling in the Western Swiss Alps along a wide elevation gradient (>2,500 m).

View Article and Find Full Text PDF

Soil is one of the most complex systems on Earth, functioning at the interface between the lithosphere, biosphere, hydrosphere, and atmosphere and generating a multitude of functions. Moreover, soil constitutes the belowground environment from which plants capture water and nutrients. Despite their great importance, soil properties are often not sufficiently considered in other disciplines, especially in spatial studies of plant distributions.

View Article and Find Full Text PDF

Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation.

View Article and Find Full Text PDF

Unlabelled: Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km area with 2,200-m elevation gradient in the western Swiss Alps.

View Article and Find Full Text PDF