Oxygen evolution reaction (OER) catalyst stability metrics derived from aqueous model systems (AMSs) prove valuable only if they are transferable to technical membrane electrode assembly (MEA) settings. Currently, there is consensus that stability data derived from ubiquitous rotating disk electrode (RDE)-based investigations substantially overestimate material degradation mainly due to the nonideal inertness of catalyst-backing electrode materials as well as bubble shielding of the catalyst by evolved oxygen. Despite the independently developed understanding of these two processes, their interplay and relative impact on intrinsic and operational material stability have not yet been established.
View Article and Find Full Text PDFUnderstanding the structure of nanoparticles under (electro)catalytic operating conditions is crucial for uncovering structure-property relationships. By combining X-ray total scattering and pair distribution function analysis with small-angle X-ray scattering (SAXS), we obtained comprehensive structural information on ultrasmall (<3 nm) iridium nanoparticles and tracked their changes during oxygen evolution reaction (OER) in acid. When subjected to electrochemical conditions at reducing potentials, the metallic Ir nanoparticles are found to be decahedral.
View Article and Find Full Text PDFProton exchange membrane water electrolysis (PEMWE) is a promising technology to produce hydrogen directly from renewable electricity sources due to its high power density and potential for dynamic operation. Widespread application of PEMWE is, however, currently limited due to high cost and low efficiency, for which high loading of expensive iridium catalyst and high OER overpotential, respectively, are important reasons. In this study, we synthesize highly dispersed IrRu nanoparticles (NPs) supported on antimony-doped tin oxide (ATO) to maximize catalyst utilization.
View Article and Find Full Text PDFState-of-the-art industrial electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions are Ir-based. Considering the scarce supply of Ir, it is imperative to use the precious metal as efficiently as possible. In this work, we immobilized ultrasmall Ir and IrRu nanoparticles on two different supports to maximize their dispersion.
View Article and Find Full Text PDFHydrogen production from renewable resources and its reconversion into electricity are two important pillars toward a more sustainable energy use. The efficiency and viability of these technologies heavily rely on active and stable electrocatalysts. Basic research to develop superior electrocatalysts is commonly performed in conventional electrochemical setups such as a rotating disk electrode (RDE) configuration or H-type electrochemical cells.
View Article and Find Full Text PDF