Publications by authors named "Aline Bonifacie"

Nitrites are food additives used in meatfor their bacteriological, technological and sensory properties.However, they are suspected to be involved in the formation of various mutagenic nitroso compounds (NOCs).With a view to reducing the use of nitrite in meat products to improve the healthiness thereof, the formation of NOCs was studied during dynamic in vitro digestion ofcooked and recooked meats preparedwith various levels of nitrite.

View Article and Find Full Text PDF

digestions of dry-cured sausages formulated with four different rates of added sodium nitrite and sodium nitrate (NaNO / NaNO, in ppm: 0/0; 80/80; 120/120; 0/200) were performed with a dynamic gastrointestinal digester (DIDGI®). The chemical reactivity of the potentially toxic nitroso-compounds (NOCs), oxidation reactions products and different iron types were evaluated over time. No nitrite nor nitrate dose effect was observed on NOCs' chemical reactivity.

View Article and Find Full Text PDF

Processed meats' nutritional quality may be enhanced by bioactive vegetable molecules, by preventing the synthesis of nitrosamines from N-nitrosation, and harmful aldehydes from lipid oxidation, through their reformulation. Both reactions occur during digestion. The precise effect of these molecules during processed meats' digestion must be deepened to wisely select the most efficient vegetable compounds.

View Article and Find Full Text PDF

Nitrite and nitrate are present in many foods. Nitrate can be converted into nitrite in human body. Nitrite can react with secondary amines to form secondary amines and with thiols to form nitrosothiols.

View Article and Find Full Text PDF

Food processing affects the structure and chemical state of proteins. In particular, protein oxidation occurs and may impair protein properties. These chemical reactions initiated during processing can develop during digestion.

View Article and Find Full Text PDF

Nitrite and nitrate are added to cured meat for their bacteriological, technological and sensorial properties. However, they are suspected to be involved in the formation of nitroso compounds (NOCs), such as potentially mutagenic nitrosamines, nitrosylheme and nitrosothiols. Controlling the sanitary and sensorial qualities of cured meat products by reducing these additives requires elucidating the mechanisms involved in the formation of NOCs.

View Article and Find Full Text PDF

Nitrite, added to cured meat for its bacteriological and technological properties, is implicated in the formation of nitroso compounds (NOCs), such as nitrosylheme, nitrosamines and nitrosothiols, suspected to have a potential impact on human health. The mechanisms involved in NOC formation are studied in regard with the dose-response relationship of added nitrite and its interaction with ascorbate on NOC formation in a cured and cooked meat model. The impact of a second cooking stage on nitrosation was evaluated.

View Article and Find Full Text PDF