We investigated the electrochemical sulfenylation reaction in both batch and continuous flow regimes, involving thiophenols/thiols and enol-acetates to yield α-sulfenylated ketones, without using additional oxidants or catalysts. Studies with different electrolytes were also performed, revealing that quaternary ammonium salts are the best mediators for this reaction. Notably, during the study of the reaction scope, a Boc-cysteine proved to be extremely tolerant to our protocol, thus increasing its relevance.
View Article and Find Full Text PDFWe have investigated both batch and continuous flow photoarylations of enol-acetates to yield different α-arylated aldehyde and ketone building blocks by using diazonium salts as the aryl-radical source. Different porphyrins were used as SET photocatalysts, and photophysical as well as electrochemical studies were performed to rationalize the photoredox properties and suggest mechanistic insights. Notably, the most electron-deficient porphyrin ( meso-tetra(pentafluorophenyl)porphyrin) shows the best photoactivity as an electron donor in the triplet excited state, which was rationalized by the redox potentials of excited states and the turnover of the porphyrins in the photocatalytic cycle.
View Article and Find Full Text PDFWe present a comprehensive review of the advent and impact of continuous flow chemistry with regard to the synthesis of natural products and drugs, important pharmaceutical products and definitely responsible for a revolution in modern healthcare. We detail the beginnings of modern drugs and the large scale batch mode of production, both chemical and microbiological. The introduction of modern continuous flow chemistry is then presented, both as a technological tool for enabling organic chemistry, and as a fundamental research endeavor.
View Article and Find Full Text PDF