The Threshold of Toxicological Concern (TTC) is a risk assessment tool for evaluating low-level exposure to chemicals with limited toxicological data. A next step in the ongoing development of TTC is to extend this concept further so that it can be applied to internal exposures. This refinement of TTC based on plasma concentrations, referred to as internal TTC (iTTC), attempts to convert the chemical-specific external NOAELs (in mg/kg/day) in the TTC database to an estimated internal exposure.
View Article and Find Full Text PDFThe assessment of potentially sensitive populations is an important application of risk assessment. To address the concern for age-related sensitivity to pyrethroid insecticides, life-stage physiologically based pharmacokinetic (PBPK) modeling supported by in vitro to in vivo extrapolation was conducted to predict age-dependent changes in target tissue exposure to 8 pyrethroids. The purpose of this age-dependent dosimetry was to calculate a Data-derived Extrapolation Factor (DDEF) to address age-related pharmacokinetic differences for pyrethroids in humans.
View Article and Find Full Text PDFAdvancements in measurement and modeling capabilities are providing unprecedented access to estimates of chemical exposure and bioactivity. With this influx of new data, there is a need for frameworks that help organize and disseminate information on chemical hazard and exposure in a manner that is accessible and transparent. A case study approach was used to demonstrate integration of the Adverse Outcome Pathway (AOP) and Aggregate Exposure Pathway (AEP) frameworks to support cumulative risk assessment of co-exposure to two phthalate esters that are ubiquitous in the environment and that are associated with disruption of male sexual development in the rat: di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP).
View Article and Find Full Text PDFTo address concerns around age-related sensitivity to pyrethroids, a life-stage physiologically based pharmacokinetic (PBPK) model, supported by in vitro to in vivo extrapolation (IVIVE) was developed. The model was used to predict age-dependent changes in target tissue exposure of 8 pyrethroids; deltamethrin (DLM), cis-permethrin (CPM), trans-permethrin, esfenvalerate, cyphenothrin, cyhalothrin, cyfluthrin, and bifenthrin. A single model structure was used based on previous work in the rat.
View Article and Find Full Text PDFThe concentration response for altered gene expression in primary lung epithelial cells was determined following two treatments with arsenicals: (1) a mixture of trivalent arsenic compounds representative of urinary arsenic concentrations in exposed human populations, and (2) arsenite (As2 O3 ) a common form of inhaled arsenic dust that is frequently used in both in vivo and in vitro experimental exposures. Biochemical assays did not detect any evidence of cytotoxicity at the concentrations used, apart from a concentration-related increase in cellular heme oxygenase that was also indicated by the genomic analysis. Cell signal pathway enrichment analysis indicated similar responses to both treatments, with concentration-related responses in pathways related to cell adhesion, cytoskeleton remodeling, development (morphogenesis), cell cycle control, and to a lesser extent inflammatory responses.
View Article and Find Full Text PDF